1,562
Views
5
CrossRef citations to date
0
Altmetric
Articles

Telepresence Robots for People with Special Needs: A Systematic Review

ORCID Icon & ORCID Icon

References

  • Abibullaev, B., Zollanvari, A., Saduanov, B., & Alizadeh, T. (2019). Design and optimization of a bci-driven telepresence robot through programming by demonstration. IEEE Access, 7, 111625–111636. https://doi.org/10.1109/ACCESS.2019.2933268
  • Ahsan, U., Fuzail, M., Raza, Q., & Muhammad, A. (2012). Development of a virtual test bed for a robotic dead man’s switch in high speed driving. In 2012 15th International Multitopic Conference (INMIC) (pp. 97–104). IEEE.
  • Ahumada-Newhart, V., & Olson, J. S. (2019). Going to school on a robot: Robot and user interface design features that matter. ACM Transactions on Computer-Human Interaction (TOCHI), 26(4), 1–28. https://doi.org/10.1145/3325210
  • Andersson, P., Pluim, J. P., Viergever, M. A., & Ramsey, N. F. (2013). Navigation of a telepresence robot via covert visuospatial attention and real-time fMRI. Brain Topography, 26(1), 177–185. https://doi.org/10.1007/s10548-012-0252-z
  • Araujo, J. M., Zhang, G., Hansen, J. P. P., & Puthusserypady, S. (2020). Exploring eye-gaze wheelchair control. In ACM Symposium on Eye Tracking Research and Applications (pp. 1–8). ACM.
  • Beam. (2020). suitabletech.com/
  • Beraldo, G., Antonello, M., Cimolato, A., Menegatti, E., & Tonin, L. (2018). Brain-computer interface meets ros: A robotic approach to mentally drive telepresence robots. In 2018 IEEE International Conference on Robotics and Automation (ICRA) (pp. 1–6). IEEE.
  • Bi, L., Fan, X.-A., & Liu, Y. (2013). EEG-based brain controlled mobile robots: A survey. IEEE Transactions on Human-machine Systems, 43(2), 161–176. https://doi.org/10.1109/TSMCC.2012.2219046
  • Canese, K., & Weis, S. (2013). PubMed: The bibliographic database. The NCBI Hand Book 2(2),1. https://www.ncbi.nlm.nih.gov/books/NBK153385/
  • Carrascosa, C., Klügl, F., Ricci, A., & Boissier, O. (2015). From physical to virtual: Widening the perspective on multi-agent environments. Lecture Notes in Computer Science, 9068, 133–146. doi:10.1007/978-3-319-23850-0_9
  • Carreto, C., Gêgo, D., & Figueiredo, L. (2018). An eye-gaze tracking system for teleoperation of a mobile robot. Journal of Information Systems Engineering & Management, 3(2), 16. https://doi.org/10.20897/jisem.201816
  • Chang, E. (2019). Experiments and probabilities in telepresence robots. In R. L. Garner (Ed.), Exploring digital technologies for art-based special education: models and methods for the inclusive K-12 classroom (pp. 1–12). Routledge.
  • Chen, W.-L., Chen, S.-C., Chen, Y.-L., Chen, S.-H., Hsieh, J.-C., Lai, J.-S., & Kuo, T.-S. (2005). The m3s-based electric wheelchair for the people with disabilities in Taiwan. Disability and Rehabilitation, 27(24), 1471–1477. https://doi.org/10.1080/09638280500264725
  • Clotet, E., Martínez, D., Moreno, J., Tresanchez, M., & Palacín, J. (2016). Assistant personal robot (APR): Conception and application of a tele-operated assisted living robot. Sensors, 16(5), 610. https://doi.org/10.3390/s16050610
  • Cosgun, A., Florencio, D. A., & Christensen, H. I. (2013). Autonomous person following for telepresence robots. In 2013 IEEE International Conference on Robotics and Automation (pp. 4335–4342). IEEE.
  • Desai, M., Tsui, K. M., Yanco, H. A., & Uhlik, C. (2011). Essential features of telepresence robots. In 2011 IEEE Conference on Technologies for Practical Robot Applications (TePRA) (pp. 15–20). IEEE.
  • Double. (2020). Retrieved August 17, 2020, from www.doublerobotics.com/
  • Eid, M. A., Giakoumidis, N., & El-Saddik, A. (2016). A novel eye-gaze-controlled wheelchair system for navigating unknown environments: Case study with a person with als. IEEE Access, 4, 558–573. https://doi.org/10.1109/ACCESS.2016.2520093
  • Escolano, C., Antelis, J. M., & Minguez, J. (2011). A telepresence mobile robot controlled with a noninvasive brain–computer interface. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 42(3), 793–804. https://doi.org/10.1109/TSMCB.2011.2177968
  • Escolano, C., Murguialday, A. R., Matuz, T., Birbaumer, N., & Minguez, J. (2010). A telepresence robotic system operated with a p300-based brain-computer interface: Initial tests with als patients. In 2010 Annual International Conference of the IEEE Engineering in Medicine and Biology (pp. 4476–4480). IEEE.
  • Falagas, M. E., Pitsouni, E. I., Malietzis, G. A., & Pappas, G. (2008). Comparison of PubMed, Scopus, Web of Science, and Google Scholar: Strengths and weaknesses. The FASEB Journal, 22(2), 338–342. https://doi.org/10.1096/fj.07-9492LSF
  • Fels, D. I., & Weiss, P. L. T. (2001). Video-mediated communication in the classroom to support sick children: A case study. International Journal of Industrial Ergonomics, 28(5), 251–263. https://doi.org/10.1016/S0169-8141(01)00020-8
  • Ferland, F., & Michaud, F. (2016). Selective attention by perceptual filtering in a robot control architecture. IEEE Transactions on Cognitive and Developmental Systems, 8(4), 256–270. https://doi.org/10.1109/TCDS.2016.2604375
  • Finlayson, M., & Van Denend, T. (2003). Experiencing the loss of mobility: Perspectives of older adults with ms. Disability and Rehabilitation, 25(20), 1168–1180. https://doi.org/10.1080/09638280310001596180
  • Friedman, N., & Cabral, A. (2018). Using a telepresence robot to improve self-efficacy of people with developmental disabilities. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 489–491). ACM.
  • Gandhi, V., Prasad, G., Coyle, D., Behera, L., & McGinnity, T. M. (2014). EEG-based mobile robot control through an adaptive brain–robot interface. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 44(9), 1278–1285. https://doi.org/10.1109/TSMC.2014.2313317
  • Hansen, J. P., Alapetite, A., Thomsen, M., Wang, Z., Minakata, K., & Zhang, G. (2018). Head and gaze control of a telepresence robot with an HMD. In Proceedings of the 2018 ACM Symposium on Eye Tracking Research & Applications (pp. 1–3). ACM.
  • Hanson, V. L., Cavender, A., & Trewin, S. (2015). Writing about accessibility. Interactions, 22(6), 62–65. https://doi.org/10.1145/2828432
  • Hart, S. G., & Staveland, L. E. (1988). Development of nasatlx (task load index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139–183). Elsevier.
  • Hasdai, A., Jessel, A. S., & Weiss, P. L. (1998). Use of a computer simulator for training children with disabilities in the operation of a powered wheelchair. American Journal of Occupational Therapy, 52(3), 215–220. https://doi.org/10.5014/ajot.52.3.215
  • Hennessey, C. L. (2012). ACM digital library. The Charleston Advisor, 13(4), 34–38. https://doi.org/10.5260/chara.13.4.34
  • Heshmat, Y., Jones, B., Xiong, X., Neustaedter, C., Tang, A., Riecke, B. E., & Yang, L. (2018). Geocaching with a beam: Shared outdoor activities through a telepresence robot with 360 degree viewing. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (pp. 359). ACM.
  • Hou, B. J., Bekgaard, P., MacKenzie, S., Hansen, J. P. P., & Puthusserypady, S. (2020). Gimis: Gaze input with motor imagery selection. In ACM Symposium on Eye Tracking Research and Applications (pp. 1–10). ACM.
  • Jacob, R. J. (1990). What you look at is what you get: Eye movement-based interaction techniques. In Proceedings of the SIGCHI conference on Human factors in computing systems (pp. 11–18). ACM.
  • Jadhav, D., Shah, P., & Shah, H. (2018). A study to design vi classrooms using virtual reality aided telepresence. In 2018 IEEE 18th International Conference on Advanced Learning Technologies (ICALT) (pp. 319–321). IEEE.
  • Jerald, J. (2015). The VR book: Human-centered design for virtual reality. Morgan & Claypool.
  • Kishore, S., González-Franco, M., Hintemüller, C., Kapeller, C., Guger, C., Slater, M., & Blom, K. J. (2014). Comparison of ssvep bci and eye tracking for controlling a humanoid robot in a social environment. Presence: Teleoperators and Virtual Environments, 23(3), 242–252. https://doi.org/10.1162/PRES_a_00192
  • Knowles, B., Hanson, V. L., Rogers, Y., Piper, A. M., Waycott, J., Davies, N., Ambe, A. H., Brewer, R. N., Chattopadhyay, D., Dee, M., Frohlich, D., GutierrezLopez, M., Jelen, B., Lazar, A., Nielek, R., Pena, B. B., Roper, A., Schlager, M., Schulte, B., & Yuan, I. Y. (2021). The harm in conflating aging with accessibility. Communications of the ACM, 64(7), 66–71. https://doi.org/10.1145/3431280
  • Koceski, S., & Koceska, N. (2016). Evaluation of an assistive telepresence robot for elderly healthcare. Journal of Medical Systems, 40(5), 121. https://doi.org/10.1007/s10916-016-0481-x
  • Kosugi, A., Kobayashi, M., & Fukuda, K. (2016). Hands-free collaboration using telepresence robots for all ages. In Proceedings of the 19th ACM Conference on Computer Supported Cooperative Work and Social Computing Com p anion (pp. 313–316). ACM.
  • Kristoffersson, A., Coradeschi, S., & Loutfi, A. (2013). A review of mobile robotic telepresence,” Advances in. Advances in Human-Computer Interaction, 2013, 1–17. https://doi.org/10.1155/2013/902316
  • Lee, M. K., & Takayama, L. (2011). Now, i have a body: Uses and social norms for mobile remote presence in the workplace. In Proceedings of the SIGCHI conference on human factors in computing systems (pp. 33–42). ACM.
  • Leeb, R., Perdikis, S., Tonin, L., Biasiucci, A., Tavella, M., Creatura, M., Molina, A., Al-Khodairy, A., Carlson, T., & dR Millán, J. (2013). Transferring brain–computer interfaces beyond the laboratory: Successful application control for motor-disabled users. Artificial Intelligence in Medicine, 59(2), 121–132. https://doi.org/10.1016/j.artmed.2013.08.004
  • Leeb, R., Tonin, L., Rohm, M., Desideri, L., Carlson, T., & D. R. Millán, J. (2015). Towards Independence: A BCI telepresence robot for people with severe motor disabilities. Proceedings of the IEEE, 103(6), 969–982. https://doi.org/10.1109/JPROC.2015.2419736
  • Mack, K., McDonnell, E., Jain, D., Lu Wang, L., Froehlich, J. E., & Findlater, L. (2021). What do we mean by “accessibility research”? A literature survey of accessibility papers in chi and assets from 1994 to 2019. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–18). ACM.
  • Minsky, M. (1980). Telepresence. Omni, 2(9), 44–52. https://web.media.mit.edu/~minsky/papers/Telepresence.html
  • Moher, D., Liberati, A., Tetzlaff, J., & Altman, D. G. (2009). Preferred reporting items for systematic reviews and meta-analyses: The PRISMA statement. PLoS Medicine, 6(7), e1000097. https://doi.org/10.1371/journal.pmed.1000097
  • Mohr, G. C. (1987). Robotic telepresence. In Proceedings of the Annual Reliability and Maintainability Symposium. IEEE.
  • Moyle, W., Arnautovska, U., Ownsworth, T., & Jones, C. (2017). Potential of telepresence robots to enhance social connectedness in older adults with dementia: An integrative review of feasibility. International Psychogeriatrics, 29(12), 1951–1964. https://doi.org/10.1017/S1041610217001776
  • Moyle, W., Jones, C., Cooke, M., O’Dwyer, S., Sung, B., & Drummond, S. (2013). Social robots helping people with dementia: Assessing efficacy of social robots in the nursing home environment. In 2013 6th International Conference on Human System Interactions (HSI) (pp. 608–613). IEEE.
  • Moyle, W., Jones, C., Cooke, M., O’Dwyer, S., Sung, B., & Drummond, S. (2014). Connecting the person with dementia and family: A feasibility study of a telepresence robot. BMC Geriatrics, 14(1), 7. https://doi.org/10.1186/1471-2318-14-7
  • Newhart, V. A. (2014). Virtual inclusion via telepresence robots in the classroom. In CHI’14 Extended Abstracts on Human Factors in Computing Systems (pp. 951–956). ACM.
  • Newhart, V. A., & Olson, J. S. (2017). My student is a robot: How schools manage telepresence experiences for students. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 342–347). ACM.
  • Newhart, V. A., Warschauer, M., & Sender, L. (2016). Virtual inclusion via telepresence robots in the classroom: An exploratory case study. The International Journal of Technologies in Learning, 23(4), 9–25. https://doi.org/10.18848/2327-0144/CGP/v23i04/9-25
  • Ng, M. K., Primatesta, S., Giuliano, L., Lupetti, M. L., Russo, L. O., Farulla, G. A., Indaco, M., Rosa, S., Germak, C., & Bona, B. (2015). A cloud robotics system for telepresence enabling mobility impaired people to enjoy the whole museum experience. In 2015 10th International Conference on Design & Technology of Integrated Systems in Nanoscale Era (DTIS) (pp. 1–6). IEEE.
  • Niemelä, M., van Aerschot, L., Tammela, A., & Aaltonen, I. (2017). A telepresence robot in residential care: Family increasingly present, personnel worried about privacy. In International Conference on Social Robotics (pp. 85–94). Springer.
  • Ondas, S., Juhar, J., Pleva, M., Cizmar, A., & Holcer, R. (2013). Service robot scorpio with robust speech interface. International Journal of Advanced Robotic Systems, 10(1), 3. https://doi.org/10.5772/54934
  • Pacaux-Lemoine, M.-P., Habib, L., & Carlson, T. (2018). Human-robot cooperation through brain-computer interaction and emulated haptic supports. In 2018 IEEE International Conference on Industrial Technology (ICIT) (pp. 1973–1978). IEEE.
  • Padbot. (2020). Retrieved August 17, 2020, from www.padbot.com/
  • Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2008). Situation awareness, mental workload, and trust in automation: Viable, empirically supported cognitive engineering constructs. Journal of Cognitive Engineering and Decision Making, 2(2), 140–160. https://doi.org/10.1518/155534308X284417
  • Park, C. H., & Howard, A. M. (2012). Real world haptic exploration for telepresence of the visually impaired. In Proceedings of the seventh annual ACM/IEEE international conference on Human-Robot Interaction (pp. 65–72). IEEE.
  • Park, C. H., & Howard, A. M. (2013). Real-time haptic rendering and haptic telepresence robotic system for the visually impaired. In 2013 World Haptics Conference (WHC) (pp. 229–234). IEEE.
  • Park, C. H., & Howard, A. M. (2014). Robotics-based telepresence using multi-modal interaction for individuals with visual impairments. International Journal of Adaptive Control and Signal Processing, 28(12), 1514–1532. https://doi.org/10.1002/acs.2495
  • Park, C. H., Ryu, E.-S., & Howard, A. M. (2015). Telerobotic haptic exploration in art galleries and museums for individuals with visual impairments. IEEE Transactions on Haptics, 8(3), 327–338. https://doi.org/10.1109/TOH.2015.2460253
  • Pérez, L., Diez, E., Usamentiaga, R., & García, D. F. (2019). Industrial robot control and operator training using virtual reality interfaces. Computers in Industry, 109, 114–120. https://doi.org/10.1016/j.compind.2019.05.001
  • Petrushin, A., Barresi, G., & Mattos, L. S. (2018). Gaze-controlled laser pointer platform for people with severe motor impairments: Preliminary test in telepresence. In 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 1813–1816). IEEE.
  • Petrushin, A., Tessadori, J., Barresi, G., & Mattos, L. S. (2018). Effect of a click-like feedback on motor imagery in eeg-bci and eye-tracking hybrid control for telepresence. In 2018 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM) (pp. 628–633). IEEE.
  • Rae, I., Takayama, L., & Mutlu, B. (2013). The influence of height in robot-mediated communication. In Proceedings of the 8th ACM/IEEE international conference on Human-robot interaction (pp. 1–8). IEEE Press.
  • Rajeswaran, P., & Orsborn, A. L. (2021). Neural interface translates thoughts into type. Nature, 600(7890), 618. https://www.nature.com/articles/d41586-021-00776-8
  • Riek, L. D. (2017). Healthcare robotics. Communications of the ACM, 60(11), 68–78. https://doi.org/10.1145/3127874
  • Rios, D., Magasi, S., Novak, C., & Harniss, M. (2016). Conducting accessible research: Including people with disabilities in public health, epidemiological, and outcomes studies. American Journal of Public Health, 106(12), 2137–2144. https://doi.org/10.2105/AJPH.2016.303448
  • Sabet, M., Orand, M., & McDonald, D. W. (2021). Designing telepresence drones to support synchronous, mid-air remote collaboration: An exploratory study. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–17). ACM.
  • Sankhe, P., Kuriakose, S., & Lahiri, U. (2013). A step towards a robotic system with smartphone working as its brain: An assistive technology. In 2013 International Conference on Control, Automation, Robotics and Embedded Systems (CARE) (pp. 1–6). IEEE.
  • Schwind, V., Knierim, P., Haas, N., & Henze, N. (2019). Using presence questionnaires in virtual reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–12). ACM.
  • Shishehgar, M., Kerr, D., & Blake, J. (2018). A systematic review of research into how robotic technology can help older people. Smart Health, 7, 1–18. https://doi.org/10.1016/j.smhl.2018.03.002
  • Simpson, R. C., LoPresti, E. F., & Cooper, R. A. (2008). How many people would benefit from a smart wheelchair? The Journal of Rehabilitation Research and Development, 45(1), 53–72. https://doi.org/10.1682/JRRD.2007.01.0015
  • Soares, N., Kay, J. C., & Craven, G. (2017). Mobile robotic telepresence solutions for the education of hospitalized children. Perspectives in Health Information Management, 14(Fall), 1–14. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5653953/
  • Stawicki, P., Gembler, F., & Volosyak, I. (2016). Driving a semiautonomous mobile robotic car controlled by an ssvep-based bci. Computational Intelligence and Neuroscience, 2016, 1–14. https://doi.org/10.1155/2016/4909685
  • Steinfeld, A., Fong, T., Kaber, D., Lewis, M., Scholtz, J., Schultz, A., & Goodrich, M. (2006). Common metrics for human-robot interaction. In Proceedings of the 1st ACM SIGCHI/SIGART conference on Human-robot interaction (pp. 33–40). ACM.
  • Stephanidis, C., & Savidis, A. (2001). Universal Access in the Information Society: Methods, Tools, and Interaction Technologies. Universal Access in the Information Society, 1(1), 40–55. https://doi.org/10.1007/s102090100008
  • Stuck, R. E., Hartley, J. Q., Mitzner, T. L., Beer, J. M., & Rogers, W. A. (March 2017). Understanding attitudes of adults aging with mobility impairments toward telepresence robots. In Proceedings of the Companion of the 2017 ACM/IEEE International Conference on Human-Robot Interaction (New York, NY, USA) (pp. 293–294). ACM.
  • Szajna, B. (1996). Empirical evaluation of the revised technology acceptance model. Management Science, 42(1), 85–92. https://doi.org/10.1287/mnsc.42.1.85
  • Takayama, L., Marder-Eppstein, E., Harris, H., & Beer, J. M. (2011). Assisted driving of a mobile remote presence system: System design and controlled user evaluation. In Proceedings - IEEE International Conference on Robotics and Automation. IEEE.
  • Tanaka, K., Nakanishi, H., & Ishiguro, H. (2014). Comparing video, avatar, and robot mediated communication: Pros and cons of embodiment. In International conference on collaboration technologies (pp. 96–110). Springer.
  • Tanaka, F., Takahashi, T., Matsuzoe, S., Tazawa, N., & Morita, M. (2014). Telepresence robot helps children in communicating with teachers who speak a different language. In Proceedings of the 2014 ACM/IEEE international conference on Human-robot interaction (pp. 399–406). ACM.
  • Tavakoli, M., Carriere, J., & Torabi, A. (2020). Robotics, smart wearable technologies, and autonomous intelligent systems for healthcare during the covid-19 pandemic: An analysis of the state of the art and future vision. Advanced Intelligent Systems, 2(7), 2000071. https://doi.org/10.1002/aisy.202000071
  • Tonin, L., Carlson, T., Leeb, R., & Millán, J. D. R. (2011). Brain-controlled telepresence robot by motor-disabled people. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology S o c iet (pp. 4227–4230). IEEE.
  • Tonin, L., Leeb, R., Tavella, M., Perdikis, S., & D. R. Millán, J. (2010). The role of shared-control in bci-based telepresence. In 2010 IEEE International Conference on Systems, Man and Cybernetics (pp. 1462–1466). IEEE.
  • Tsui, K. M., Dalphond, J. M., Brooks, D. J., Medvedev, M. S., McCann, E., Allspaw, J., Kontak, D., & Yanco, H. A. (2015). Accessible human-robot interaction for telepresence robots: A case study. Paladyn, Journal of Behavioral Robotics, 6(1), 1–29. https://doi.org/10.1515/pjbr-2015-0001
  • Tsui, K. M., Flynn, K., McHugh, A., Yanco, H. A., & Kontak, D. (2013). Designing speech-based interfaces for telepresence robots for people with disabilities. In 2013 IEEE International Conference on Rehabilitation Robotics (ICORR) (pp. 1–8). IEEE.
  • Tsui, K. M., McCann, E., McHugh, A., Medvedev, M., Yanco, H. A., Kontak, D., & Drury, J. L. (2014). Towards designing telepresence robot navigation for people with disabilities. International Journal of Intelligent Computing and Cybernetics, 7(3), 307–344. https://doi.org/10.1108/IJICC-10-2013-0044
  • Tsun, M. T. K., Theng, L. B., Jo, H. S., & Lau, S. L. (2015). A robotic telepresence system for full-time monitoring of children with cognitive disabilities. In Proceedings of the international Convention on Rehabilitation Engineering & Assistive Technology (pp. 1–4). START Centre.
  • Turk, M. (2014). Multimodal interaction: A review. Pattern Recognition Letters, 36(1), 189–195. https://doi.org/10.1016/j.patrec.2013.07.003
  • UNICEF and WHO. (2015). Assistive technology for children with disabilities: Creating opportunities for education, inclusion and participation: A discussion paper. Geneva: WHO.
  • Vasic, M., & Billard, A. (2013). Safety issues in human-robot interactions. In 2013 IEEE International Conference on Robotics and Automation (pp. 197–204). IEEE.
  • Voznenko, T. I., Chepin, E. V., & Urvanov, G. A. (2018). The control system based on extended bci for a robotic wheelchair. Procedia Computer Science, 123, 522–527. https://doi.org/10.1016/j.procs.2018.01.079
  • Watson, G. S., Papelis, Y. E., & Hicks, K. C. (2016). Simulation-based environment for the eye-tracking control of tele-operated mobile robots. In Proceedings of the Modeling and Simulation of Complexity in Intelligent, Adaptive and Autonomous Systems 2016 (MSCI- AAS 2016) and Space Simulation for Planetary Space Exploration (SPACE 2016) (pp. 1–7). Society for Computer Simulation.
  • Wieringa, R., Maiden, N., Mead, N., & Rolland, C. (2006). Requirements engineering paper classification and evaluation criteria: A proposal and a discussion. Requirements Engineering, 11(1), 102–107. https://doi.org/10.1007/s00766-005-0021-6
  • Wilde, M. (2016). IEEE xplore digital library. The Charleston Advisor, 17(4), 24–30. https://doi.org/10.5260/chara.17.4.24
  • Williams, J. R. (2008). The declaration of Helsinki and public health. Bulletin of the World Health Organization, 86(8), 650–652. https://doi.org/10.2471/BLT.08.050955
  • Witmer, B. G., & Singer, M. J. (1994). Measuring immersion in virtual environments. tech. rep., ARI Technical Report 1014. US Army Research Institute for the Behavioral and Social Sciences.
  • World Health Organization. (2011). World report on disability. Geneva: WHO. 1–325. https://www.who.int/disabilities/world_report/2011/report.pdf
  • Wu, X., Thomas, R. C., Drobina, E. C., Mitzner, T. L., & Beer, J. M. (2017). Telepresence heuristic evaluation for adults aging with mobility impairment. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 61 16–20). SAGE Publications Sage CA.
  • Yamaguchi, J., Parone, C., Di, D. F., Beomonte, P. Z., & Felzani, G. (2015). Measuring benefits of telepresence robot for individuals with motor impairments. Studies in Health Technology and Informatics, 217, 703–709. doi:10.3233/978-1-61499-566-1-703
  • Yang, L., Neustaedter, C., & Schiphorst, T. (2017). Communicating through a telepresence robot: A study of long distance relationships. In Proceedings of the 2017 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 3027–3033). ACM.
  • Zhang, G., & Hansen, J. P. (2019). Accessible control of telepresence robots based on eye tracking. In Proceedings of the 11th ACM Symposium on Eye Tracking Research & Appli c ations (pp. 1–3). ACM.
  • Zhang, G., & Hansen, J. P. (2020). People with motor disabilities using gaze to control telerobots. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–9). ACM.
  • Zhang, G., Hansen, J. P., & Minakata, K. (2019). Hand and gaze-control of telepresence robots. In Proceedings of the 11th ACM Symposium on Eye Tracking Research & Applications (pp. 1–8). ACM.
  • Zhang, G., Hansen, J. P., Minakata, K., Alapetite, A., & Wang, Z. (2019). Eye-gaze-controlled telepresence robots for people with motor disabilities. In 2019 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 574–575). IEEE.
  • Zhang, G., Minakata, K., & Hansen, J. P. (2019). Enabling real-time measurement of situation awareness in robot teleoperation with a head-mounted display. In Nordic Human Factors Society Conference (pp. 169–171). NES.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.