701
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

A Survey of Technologies Facilitating Home and Community-Based Stroke Rehabilitation

ORCID Icon, , , , , , & ORCID Icon show all
Pages 1016-1042 | Received 15 Jul 2021, Accepted 01 Mar 2022, Published online: 20 Apr 2022

References

  • Aggogeri, F., Mikolajczyk, T., & O’Kane, J. (2019). Robotics for rehabilitation of hand movement in stroke survivors. Advances in Mechanical Engineering, 11(4), 168781401984192. https://doi.org/10.1177/1687814019841921
  • Airò Farulla, G., Pianu, D., Cempini, M., Cortese, M., Russo, L. O., Indaco, M., Nerino, R., Chimienti, A., Oddo, C. M., & Vitiello, N. (2016). Vision-based pose estimation for robot-mediated hand telerehabilitation. Sensors (Basel, Switzerland), 16(2), 208. https://doi.org/10.3390/s16020208
  • Akinsiku, A., Avellino, I., Graham, Y., & Mentis, H. M. (2021). It’s not just the movement: Experiential information needed for stroke telerehabilitation. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–12). Association for Computing Machinery.
  • Al Mahmud, A., & Martens, J.-B. (2013). Amail: Design and evaluation of an accessible email tool for persons with aphasia. Interacting with Computers, 25(5), 351–374. https://doi.org/10.1093/iwc/iws025
  • Alnajjar, M., Abutabikh, A., Issa, A., Debeljak, M., & Cikajlo, I. (2020). Development of 3D exergame for upper limbs rehabilitation using leap motion controller and unity. In 2020 International Conference on Assistive and Rehabilitation Technologies (iCareTech) (pp. 24–29). IEEE. https://doi.org/10.1109/iCareTech49914.2020.00011
  • Ambrosini, E., Ferrante, S., Zajc, J., Bulgheroni, M., Baccinelli, W., & d’Amico, E. (2017). The combined action of a passive exoskeleton and an EMG-controlled neuroprosthesis for upper limb stroke rehabilitation: First results of the RETRAINER project. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 56–61).
  • Ang, B. W., & Yeow, C.-H. (2019). Design and characterization of a 3D printed soft robotic wrist sleeve with 2 DoF for stroke rehabilitation. In 2019 2nd IEEE International Conference on Soft Robotics (RoboSoft) (pp. 577–582). https://doi.org/10.1109/ROBOSOFT.2019.8722771
  • Atashzar, S. F., Polushin, I. G., & Patel, R. V. (2017). A small-gain approach for nonpassive bilateral telerobotic rehabilitation: Stability analysis and controller synthesis. IEEE Transactions on Robotics, 33(1), 49–66. https://doi.org/10.1109/TRO.2016.2623336
  • Bai, J., Song, A., & Li, H. (2019). Design and analysis of cloud upper limb rehabilitation system based on motion tracking for post-stroke patients. Applied Sciences, 9(8), 1620. https://doi.org/10.3390/app9081620
  • Baker, A. (2001). Crossing the quality chasm: A new health system for the 21st century. British Medical Journal Publishing Group, 323(7322), 1192. https://doi.org/10.1136/bmj.323.7322.1192
  • Bircanin, F., Ploderer, B., Sitbon, L., Bayor, A. A., & Brereton, M. (2019). Challenges and opportunities in using Augmentative and Alternative Communication (AAC) technologies: Design considerations for adults with severe disabilities. In Proceedings of the 31st Australian Conference on Human-Computer-Interaction (pp. 184–196). Association for Computing Machinery. https://doi.org/10.1145/3369457.3369473
  • Blanche, P.-A., Bablumian, A., Voorakaranam, R., Christenson, C., Lin, W., Gu, T., Flores, D., Wang, P., Hsieh, W.-Y., Kathaperumal, M., Rachwal, B., Siddiqui, O., Thomas, J., Norwood, R. A., Yamamoto, M., & Peyghambarian, N. (2010). Holographic three-dimensional telepresence using large-area photorefractive polymer. Nature, 468(7320), 80–83. https://doi.org/10.1038/nature09521
  • Borresen, A., Wolfe, C., Lin, C.-K., Tian, Y., Raghuraman, S., Nahrstedt, K., Prabhakaran, B., & Annaswamy, T. (2019). Usability of an Immersive Augmented Reality Based Telerehabilitation System with Haptics (ARTESH) for synchronous remote musculoskeletal examination. International Journal of Telerehabilitation, 11(1), 23–32. https://doi.org/10.5195/ijt.2019.6275
  • Bos, R. A., Haarman, C. J. W., Stortelder, T., Nizamis, K., Herder, J. L., Stienen, A. H. A., & Plettenburg, D. H. (2016). A structured overview of trends and technologies used in dynamic hand orthoses. Journal of Neuroengineering and Rehabilitation, 13(1), 62. https://doi.org/10.1186/s12984-016-0168-z
  • Boter, H., & HESTIA Study Group. (2004). Multicenter randomized controlled trial of an outreach nursing support program for recently discharged stroke patients. Stroke, 35(12), 2867–2872. https://doi.org/10.1161/01.STR.0000147717.57531.e5
  • Brennan, D. M., Georgeadis, A. C., Baron, C. R., & Barker, L. M. (2004). The effect of videoconference-based telerehabilitation on story retelling performance by brain-injured subjects and its implications for remote speech-language therapy. Telemedicine Journal and e-Health : The Official Journal of the American Telemedicine Association, 10(2), 147–154. https://doi.org/10.1089/tmj.2004.10.147
  • Brokaw, E. B., Black, I., Holley, R. J., & Lum, P. S. (2011). Hand Spring Operated Movement Enhancer (HandSOME): a portable, passive hand exoskeleton for stroke rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 19(4), 391–399. https://doi.org/10.1109/TNSRE.2011.2157705
  • Burke, J., McNeill, M., Charles, D., Morrow, P., Crosbie, J., McDonough, S. (2010). Augmented reality games for upper-limb stroke rehabilitation. In 2010 Second International Conference on Games and Virtual Worlds for Serious Applications (pp. 75–78). IEEE.
  • Carragher, M., Talbot, R., Devane, N., Rose, M., & Marshall, J. (2018). Delivering storytelling intervention in the virtual world of EVA park. Aphasiology, 32(sup1), 37–39. https://doi.org/10.1080/02687038.2018.1484880
  • Cha, Y.-W., Price, T., Wei, Z., Lu, X., Rewkowski, N., Chabra, R., Qin, Z., Kim, H., Su, Z., Liu, Y., Ilie, A., State, A., Xu, Z., Frahm, J.-M., & Fuchs, H. (2018). Towards fully mobile 3D face, body, and environment capture using only head-worn cameras. IEEE Transactions on Visualization and Computer Graphics, 24(11), 2993–3004. https://doi.org/10.1109/TVCG.2018.2868527
  • Chae, S. H., Kim, Y., Lee, K.-S., & Park, H.-S. (2020). Development and clinical evaluation of a web-based upper limb home rehabilitation system using a smartwatch and machine learning model for chronic stroke survivors: Prospective comparative study. JMIR mHealth and uHealth, 8(7), e17216. https://doi.org/10.2196/17216
  • Chen, L., Chen, Y., Chen, X., Shen, X., Wang, Q., & Sun, C. (2018). Longitudinal study of effectiveness of a patient-centered self-management empowerment intervention during predischarge planning on stroke survivors. Worldviews on Evidence-Based Nursing, 15(3), 197–205. https://doi.org/10.1111/wvn.12295
  • Chen, Y., Abel, K. T., Janecek, J. T., Chen, Y., Zheng, K., & Cramer, S. C. (2019). Home-based technologies for stroke rehabilitation: A systematic review. International journal of medical informatics, 123, 11–22. https://doi.org/10.1016/j.ijmedinf.2018.12.001
  • Chen, Y.-P. P., Johnson, C., Lalbakhsh, P., Caelli, T., Deng, G., Tay, D., Erickson, S., Broadbridge, P., El Refaie, A., Doube, W., & Morris, M. E. (2016). Systematic review of virtual speech therapists for speech disorders. Computer Speech & Language, 37, 98–128. https://doi.org/10.1016/j.csl.2015.08.005
  • Cherney, L. R., Halper, A. S., Holland, A. L., & Cole, R. (2008). Computerized script training for aphasia: Preliminary results. American Journal of Speech-Language Pathology, 17(1), 19–34. https://doi.org/10.1044/1058-0360(2008/003)
  • Cherney, L. R., & van Vuuren, S. V. (2012). Telerehabilitation, virtual therapists, and acquired neurologic speech and language disorders. Seminars in Speech and Language, 33(3), 243–257.
  • Cikajlo, I., Rudolf, M., Goljar, N., Burger, H., & Matjačić, Z. (2012). Telerehabilitation using virtual reality task can improve balance in patients with stroke. Disability and Rehabilitation, 34(1), 13–18. https://doi.org/10.3109/09638288.2011.583308
  • Constantinescu, G., Theodoros, D., Russell, T., Ward, E., Wilson, S., & Wootton, R. (2010). Assessing disordered speech and voice in Parkinson’s disease: A telerehabilitation application. International Journal of Language & Communication Disorders, 45(6), 630–644. https://doi.org/10.3109/13682820903470569
  • Craig, P., Jin, Y., & Sun, J. (2020). A home-based adaptive collaborative system for stroke patient rehabilitation. In Y. Luo (Ed.), Cooperative design, visualization, and engineering (pp. 1–10). Springer International Publishing.
  • David, V., Forjan, M., Martinek, J., Kotzian, S., Jagos, H., & Rafolt, D. (2017). Evaluating wearable multimodal sensor insoles for motion-pattern measurements in stroke rehabilitation—a pilot study. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 1543–1548). IEEE.
  • Demmans Epp, C., Djordjevic, J., Wu, S., Moffatt, K., & Baecker, R. M. (2012). Towards providing just-in-time vocabulary support for assistive and augmentative communication. In Proceedings of the 2012 ACM International Conference on Intelligent User Interfaces (pp. 33–36). Association for Computing Machinery.
  • Dietz, A., Vannest, J., Maloney, T., Altaye, M., Holland, S., & Szaflarski, J. P. (2018). The feasibility of improving discourse in people with aphasia through AAC: Clinical and functional MRI correlates. Aphasiology, 32(6), 693–719. https://doi.org/10.1080/02687038.2018.1447641
  • Dietz, A., Wallace, S. E., & Weissling, K. (2020). Revisiting the role of augmentative and alternative communication in aphasia rehabilitation. American Journal of Speech-Language Pathology, 29(2), 909–913. https://doi.org/10.1080/09602011.2015.1048254
  • Ding, C., Halabi, N., Al-Zaben, L., Li, Y., Draffan, E. A., & Wald, M. (2015). A web based multi-linguists symbol-to-text AAC application. In Proceedings of the 12th International Web for All Conference (pp. 1–2). Association for Computing Machinery. https://doi.org/10.1145/2745555.2746674
  • Dobkin, B. H. (2004). Strategies for stroke rehabilitation. The Lancet. Neurology, 3(9), 528–536. https://doi.org/10.1016/S1474-4422(04)00851-8
  • Dornheim, M., & Kaltsouni, E. (2019). Aphasia rehabilitation agent: Towards personalized aphasia rehabilitation.
  • Egaji, O. A., Asghar, I., Griffiths, M., & Warren, W. (2019). Digital speech therapy for the aphasia patients: Challenges, opportunities and solutions. In Proceedings of the 9th International Conference on Information Communication and Management (pp. 85–88). Association for Computing Machinery. https://doi.org/10.1145/3357419.3357449
  • Eichler, N., Hel-Or, H., Shimshoni, I., Itah, D., Gross, B., & Raz, S. (2018). 3D motion capture system for assessing patient motion during Fugl-Meyer stroke rehabilitation testing. IET Computer Vision, 12(7), 963–975. https://doi.org/10.1049/iet-cvi.2018.5274
  • Ekerete, I., Nugent, C., & McLaughlin, J. (2018). An unobtrusive sensing solution for home based post-stroke rehabilitation. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1478–1479). IEEE. https://doi.org/10.1109/BIBM.2018.8621279
  • Elloker, T., & Rhoda, A. J. (2018). The relationship between social support and participation in stroke: A systematic review. African Journal of Disability, 7, 357. https://doi.org/10.4102/ajod.v7i0.357
  • Escalona, F., Martinez-Martin, E., Cruz, E., Cazorla, M., & Gomez-Donoso, F. (2020). EVA: EVAluating at-home rehabilitation exercises using augmented reality and low-cost sensors. Virtual Reality, 24(4), 567–581. https://doi.org/10.1007/s10055-019-00419-4
  • Eslami, M., Mokhtarian, A., Pirmoradian, M., Seifzadeh, A., & Rafiaei, M. (2020). Design and fabrication of a passive upper limb rehabilitation robot with adjustable automatic balance based on variable mass of end-effector. Journal of the Brazilian Society of Mechanical Sciences and Engineering, 42(12), 629. https://doi.org/10.1007/s40430-020-02707-6
  • Gabrielli, S., Maimone, R., Costa, C., Ascolese, A., Jonsdottir, J., & Klein, W. (2015). A game-based solution for in-home rehabilitation. In R. Giaffreda (Eds.), Internet of things. User-centric IoT (pp. 112–117). Springer International Publishing.
  • Gal, N., Andrei, D., Nemeş, D. I., Nădăşan, E., & Stoicu-Tivadar, V. (2015). A Kinect based intelligent e-rehabilitation system in physical therapy. Studies in Health Technology and Informatics, 210, 489–493. https://doi.org/10.3233/978-1-61499-512-8-489
  • Galliers, J., Wilson, S., Marshall, J., Talbot, R., Devane, N., Booth, T., Woolf, C., & Greenwood, H. (2017). Experiencing EVA park, a multi-user virtual world for people with aphasia. ACM Transactions on Accessible Computing (TACCESS), 10(4), 1–24. https://doi.org/10.1145/3134227
  • Gasser, B. W., Bennett, D. A., Durrough, C. M., & Goldfarb, M. (2017). Design and preliminary assessment of Vanderbilt hand exoskeleton. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 1537–1542). IEEE. https://doi.org/10.1109/icorr.2017.8009466
  • Gauthier, L. V., Kane, C., Borstad, A., Strahl, N., Uswatte, G., Taub, E., Morris, D., Hall, A., Arakelian, M., & Mark, V. (2017). Video Game Rehabilitation for Outpatient Stroke (VIGoROUS): protocol for a multi-center comparative effectiveness trial of in-home gamified constraint-induced movement therapy for rehabilitation of chronic upper extremity hemiparesis. BMC Neurology, 17(1), 109. https://doi.org/10.1186/s12883-017-0888-0
  • Georgeadis, A., Brennan, D., Barker, L., & Baron, C. (2004). Telerehabilitation and its effect on story retelling by adults with neurogenic communication disorders. Aphasiology, 18(5–7), 639–652. https://doi.org/10.1080/02687030444000075
  • Getz, H., Snider, S., Brennan, D., & Friedman, R. (2016). Successful remote delivery of a treatment for phonological alexia via telerehab. Neuropsychological Rehabilitation, 26(4), 584–609. https://doi.org/10.1080/09602011.2015.1048254
  • Giachero, A., Calati, M., Pia, L., La Vista, L., Molo, M., Rugiero, C., Fornaro, C., & Marangolo, P. (2020). Conversational therapy through semi-immersive virtual reality environments for language recovery and psychological well-being in post stroke aphasia. Behavioural Neurology, 2020, 2846046. https://doi.org/10.1155/2020/2846046
  • Godlove, J., Anantha, V., Advani, M., Des Roches, C., & Kiran, S. (2019). Comparison of therapy practice at home and in the clinic: A retrospective analysis of the constant therapy platform data set. Frontiers in Neurology, 10, 140. https://doi.org/10.3389/fneur.2019.00140
  • Grant, J. S., Elliott, T. R., Weaver, M., Bartolucci, A. A., & Giger, J. N. (2002). Telephone intervention with family caregivers of stroke survivors after rehabilitation. Stroke, 33(8), 2060–2065. https://doi.org/10.1161/01.str.0000020711.38824.e3
  • Grellmann, B., Neate, T., Roper, A., Wilson, S., & Marshall, J. (2018). Investigating mobile accessibility guidance for people with aphasia. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 410–413). Association for Computing Machinery. https://doi.org/10.1145/3234695.3241011
  • Guo, S., & Song, Z. (2008). VR-based active rehabilitation system for upper limbs. In 2008 IEEE International Conference on Automation and Logistics (pp. 1077–1082). IEEE.
  • Hall, M. J., Levant, S., & DeFrances, C. J. (2012). Hospitalization for stroke in U.S. Hospitals, 1989–2009. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, National Center for Health Statistics.
  • Han, J., Lian, S., Guo, B., Li, X., & You, A. (2017). Active rehabilitation training system for upper limb based on virtual reality. Advances in Mechanical Engineering, 9(12), 168781401774338. https://doi.org/10.1177/1687814017743388
  • Hermann, V. H., Herzog, M., Jordan, R., Hofherr, M., Levine, P., & Page, S. J. (2010). Telerehabilitation and electrical stimulation: An occupation-based, client-centered stroke intervention. The American Journal of Occupational Therapy: Official Publication of the American Occupational Therapy Association, 64(1), 73–81. https://doi.org/10.5014/ajot.64.1.73
  • Hernández-Santos, C., Davizón, Y. A., Said, A. R., Soto, R., Félix-Herrán, L. C., & Vargas-Martínez, A. (2021). Development of a wearable finger exoskeleton for rehabilitation. Applied Sciences, 11(9), 4145. https://doi.org/10.3390/app11094145
  • Hidler, J., Nichols, D., Pelliccio, M., & Brady, K. (2005). Advances in the understanding and treatment of stroke impairment using robotic devices. Topics in Stroke Rehabilitation, 12(2), 22–35. https://doi.org/10.1310/ryt5-62n4-ctvx-8jte
  • Hill, A. J., Theodoros, D., Russell, T., & Ward, E. (2009). Using telerehabilitation to assess apraxia of speech in adults. International Journal of Language & Communication Disorders, 44(5), 731–747. https://doi.org/10.1080/13682820802350537
  • Hill, A. J., Theodoros, D. G., Russell, T. G., Cahill, L. M., Ward, E. C., & Clark, K. M. (2006). An internet-based telerehabilitation system for the assessment of motor speech disorders: A pilot study. American Journal of Speech-Language Pathology, 15(1), 45–56. https://doi.org/10.1044/1058-0360(2006/006)
  • Hoffmann, T., Russell, T., & Cooke, H. (2007). Remote measurement via the Internet of upper limb range of motion in people who have had a stroke. Journal of Telemedicine and Telecare, 13(8), 401–405. https://doi.org/10.1258/135763307783064377
  • Holden, M. K., Dyar, T. A., & Dayan-Cimadoro, L. (2007). Telerehabilitation using a virtual environment improves upper extremity function in patients with stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 15(1), 36–42. https://doi.org/10.1109/TNSRE.2007.891388
  • Holden, M. K., Dyar, T. A., Schwamm, L., & Bizzi, E. (2005). Virtual-environment-based telerehabilitation in patients with stroke. Presence: Teleoperators and Virtual Environments, 14(2), 214–233. https://doi.org/10.1162/1054746053967058
  • Hsiao, C.-P., Zhao, C., & Do, E. Y.-L. (2013). The Digital Box and Block Test Automating traditional post-stroke rehabilitation assessment. In 2013 IEEE International Conference on Pervasive Computing and Communications Workshops (PERCOM Workshops) (pp. 360–363). IEEE.
  • Huijgen, B. C. H., Vollenbroek-Hutten, M. M. R., Zampolini, M., Opisso, E., Bernabeu, M., Van Nieuwenhoven, J., Ilsbroukx, S., Magni, R., Giacomozzi, C., Marcellari, V., Marchese, S. S., & Hermens, H. J. (2008). Feasibility of a home-based telerehabilitation system compared to usual care: arm/hand function in patients with stroke, traumatic brain injury and multiple sclerosis. Journal of Telemedicine and Telecare, 14(5), 249–256. https://doi.org/10.1258/jtt.2008.080104
  • Jamal, N., Shanta, S., Mahmud, F., & Sha’abani, M. (2017). Automatic speech recognition (ASR) based approach for speech therapy of aphasic patients: A review. AIP Conference Proceedings, 1883(1), 020028. https://doi.org/10.1063/1.5002046
  • Jayasree-Krishnan, V., Gamdha, D., Goldberg, B. S., Ghosh, S., Raghavan, P., & Kapila, V. (2019). A novel task-specific upper-extremity rehabilitation system with interactive game-based interface for stroke patients. In 2019 International Symposium on Medical Robotics (ISMR) (pp. 1–7). IEEE. https://doi.org/10.1109/ISMR.2019.8710184
  • Jie, S., Haoyong, Y., Chaw, T. L., Chiang, C. C., & Vijayavenkataraman, S. (2017). An interactive upper limb rehab device for elderly stroke patients. Procedia CIRP, 60, 488–493. https://doi.org/10.1016/j.procir.2017.02.040
  • Johnson, M. J., Feng, X., Johnson, L. M., & Winters, J. M. (2007). Potential of a suite of robot/computer-assisted motivating systems for personalized, home-based, stroke rehabilitation. Journal of Neuroengineering and Rehabilitation, 4(1), 6. https://doi.org/10.1186/1743-0003-4-6
  • Johnson, M. J., Rai, R., Barathi, S., Mendonca, R., & Bustamante-Valles, K. (2017). Affordable stroke therapy in high-, low- and middle-income countries: From Theradrive to Rehab CARES, a compact robot gym. Journal of Rehabilitation and Assistive Technologies Engineering, 4. https://doi.org/10.1177/2055668317708732.
  • Kairy, D., Veras, M., Archambault, P., Hernandez, A., Higgins, J., Levin, M. F., Poissant, L., Raz, A., & Kaizer, F. (2016). Maximizing post-stroke upper limb rehabilitation using a novel telerehabilitation interactive virtual reality system in the patient’s home: Study protocol of a randomized clinical trial. Contemporary Clinical Trials, 47, 49–53. https://doi.org/10.1016/j.cct.2015.12.006
  • Keidel, M., Vauth, F., Richter, J., Hoffmann, B., Soda, H., Griewing, B., & Scibor, M. (2017). [Home-based telerehabilitation after stroke]. Der Nervenarzt, 88(2), 113–119. https://doi.org/10.1007/s00115-016-0275-x
  • Kim, S., & Park, J. (2018). Collaborative haptic exploration of dynamic remote environments. IEEE Computer Graphics and Applications, 38(5), 84–99. https://doi.org/10.1109/MCG.2018.053491733
  • Kizony, R., Zeilig, G., Dudkiewicz, I., Schejter-Margalit, T., & Rand, D. (2016). Tablet apps and dexterity: Comparison between 3 age groups and proof of concept for stroke rehabilitation. Journal of Neurologic Physical Therapy: JNPT, 40(1), 31–39. https://doi.org/10.1097/NPT.0000000000000110
  • Kohler, F., Schmitz-Rode, T., & Disselhorst-Klug, C. (2010). Introducing a feedback training system for guided home rehabilitation. Journal of Neuroengineering and Rehabilitation, 7(1), 2. https://doi.org/10.1186/1743-0003-7-2
  • Krebs, H., Hogan, N., Volpe, B., Aisen, M., Edelstein, L., & Diels, C. (1999). Overview of clinical trials with MIT-MANUS: A robot-aided neuro- rehabilitation facility. Technology and Health Care : Official Journal of the European Society for Engineering and Medicine, 7(6), 419–423. https://doi.org/10.3233/THC-1999-7606
  • Krebs, H. I., Volpe, B., & Hogan, N. (2009). A working model of stroke recovery from rehabilitation robotics practitioners. Journal of Neuroengineering and Rehabilitation, 6(1), 6. https://doi.org/10.1186/1743-0003-6-6
  • Kurillo, G., Koritnik, T., Bajd, T., & Bajcsy, R. (2011). Real-time 3D avatars for tele-rehabilitation in virtual reality. Studies in Health Technology and Informatics, 163, 290–296. https://doi.org/10.3233/978-1-60750-706-2-290
  • Kuttuva, M., Boian, R., Merians, A., Burdea, G., Bouzit, M., Lewis, J., & Fensterheim, D. (2006). The Rutgers Arm, a rehabilitation system in virtual reality: A pilot study. Cyberpsychology & Behavior : The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society, 9(2), 148–152. https://doi.org/10.1089/cpb.2006.9.148
  • Lai, J. C., Woo, J., Hui, E., & Chan, W. (2004). Telerehabilitation — a new model for community-based stroke rehabilitation. Journal of Telemedicine and Telecare, 10(4), 199–205. https://doi.org/10.1258/1357633041424340
  • Lambelet, C., Lyu, M., Woolley, D., Gassert, R., & Wenderoth, N. (2017). The eWrist — A wearable wrist exoskeleton with sEMG-based force control for stroke rehabilitation. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 726–733). IEEE. https://doi.org/10.1109/ICORR.2017.8009334
  • Le, D., Licata, K., Persad, C., & Provost, E. M. (2016). Automatic assessment of speech intelligibility for individuals with aphasia. IEEE/ACM Transactions on Audio, Speech, and Language Processing, 24(11), 2187–2199. https://doi.org/10.1109/TASLP.2016.2598428
  • Lee, J. B., & Cherney, L. R. (2008). The changing “face” of aphasia therapy. Perspectives on Neurophysiology and Neurogenic Speech and Language Disorders, 18(1), 15–23. https://doi.org/10.1044/nnsld18.1.15
  • Lee, S. I., Adans-Dester, C. P., Grimaldi, M., Dowling, A. V., Horak, P. C., Black-Schaffer, R. M., Bonato, P., & Gwin, J. T. (2018). Enabling stroke rehabilitation in home and community settings: A wearable sensor-based approach for upper-limb motor training. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1–11. https://doi.org/10.1109/JTEHM.2018.2829208
  • Lee, T., Liu, Y., Huang, P.-W., Chien, J.-T., Lam, W. K., & Yeung, Y. T. (2016). Automatic speech recognition for acoustical analysis and assessment of cantonese pathological voice and speech. In 2016 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (pp. 6475–6479). IEEE. https://doi.org/10.1109/ICASSP.2016.7472924
  • Lemaire, E. D., Boudrias, Y., & Greene, G. (2001). Low-bandwidth, Internet-based videoconferencing for physical rehabilitation consultations. Journal of Telemedicine and Telecare, 7(2), 82–89. https://doi.org/10.1258/1357633011936200
  • Lemaire, E. D., & Jeffreys, Y. (1998). Low-bandwidth telemedicine for remote orthotic assessment. Prosthetics and Orthotics International, 22(2), 155–167. https://doi.org/10.3109/03093649809164478
  • Li, H.-T., Huang, J.-J., Pan, C.-W., Chi, H.-I., & Pan, M.-C. (2015). Inertial sensing based assessment methods to quantify the effectiveness of post-stroke rehabilitation. Sensors (Basel, Switzerland), 15(7), 16196–16209. https://doi.org/10.3390/s150716196
  • Li, W.-J., Hsieh, C.-Y., Lin, L.-F., & Chu, W.-C. (2017). Hand gesture recognition for post-stroke rehabilitation using leap motion. In 2017 International Conference on Applied System Innovation (ICASI) (pp. 386–388). IEEE. https://doi.org/10.1109/ICASI.2017.7988433
  • Linder, S. M., Rosenfeldt, A. B., Bay, R. C., Sahu, K., Wolf, S. L., & Alberts, J. L. (2015). Improving quality of life and depression after stroke through telerehabilitation. The American Journal of Occupational Therapy, 69(2), 6902290020p1–690229002010. https://doi.org/10.5014/ajot.2015.014498
  • Lueg, C., & Jungo, V. (2021). Mobile remote presence robots for medical consultation and social connectedness. In J. Mantas (Eds.), Studies in health technology and informatics. IOS Press.
  • Lui, S. K., & Nguyen, M. H. (2018). Elderly stroke rehabilitation: Overcoming the complications and its associated challenges. Current Gerontology and Geriatrics Research, 2018, 9853837. https://doi.org/10.1155/2018/9853837
  • Luisa, C., Pawel, K., Martina, G., Francesca, B., Sara, F., & Andrea, T. (2021). Telerehabilitation for people with aphasia: A systematic review and meta-analysis. Journal of Communication Disorders, 92, 106111. https://doi.org/10.1016/j.jcomdis.2021.106111
  • Lum, P., Burgar, C., Loos, M. V. d., Shor, P., Majmundar, M., & Yap, R. (2005). The MIME robotic system for upper-limb neuro-rehabilitation: Results from a clinical trial in subacute stroke. In 9th International Conference on Rehabilitation Robotics, 2005. ICORR 2005 (pp. 511–514). https://doi.org/10.1109/ICORR.2005.1501153
  • Ma, L., Zhao, X., Li, Z., Zhao, M., & Xu, Z. (2018). A sEMG-based hand function rehabilitation system for stroke patients. In 2018 3rd International Conference on Advanced Robotics and Mechatronics (ICARM) (pp. 497–502). IEEE. https://doi.org/10.1109/ICARM.2018.8610809
  • Ma, M., Meyer, B. J., Lin, L., Proffitt, R., & Skubic, M. (2018). VicoVR-based wireless daily activity recognition and assessment system for stroke rehabilitation. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1117–1121). IEEE.
  • Ma, X., Boyd-Graber, J., Nikolova, S., & Cook, P. R. (2009). Speaking through pictures: Images vs. icons. In Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 163–170). Association for Computing Machinery.
  • Ma, X., Nikolova, S., & Cook, P. R. (2009). W2ANE: When words are not enough: online multimedia language assistant for people with aphasia. In Proceedings of the 17th ACM International Conference on Multimedia (pp. 749–752). Association for Computing Machinery.
  • Mahmoud, S. S., Kumar, A., Li, Y., Tang, Y., & Fang, Q. (2021). Performance evaluation of machine learning frameworks for aphasia assessment. Sensors, 21(8), 2582. https://doi.org/10.3390/s21082582
  • McKillop, C. (2018). Designing a context aware AAC solution. In Proceedings of the 20th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 468–470). Association for Computing Machinery. https://doi.org/10.1145/3234695.3240990
  • Miao, S., Shen, C., Feng, X., Zhu, Q., Shorfuzzaman, M., & Lv, Z. (2021). Upper Limb rehabilitation system for stroke survivors based on multi-modal sensors and machine learning. IEEE Access., 9, 30283–30291. https://doi.org/10.1109/ACCESS.2021.3055960
  • Moffatt, K., Pourshahid, G., & Baecker, R. M. (2017). Augmentative and alternative communication devices for aphasia: the emerging role of “smart” mobile devices. Universal Access in the Information Society, 16(1), 115–128. https://doi.org/10.1007/s10209-015-0428-x
  • Moore, Z., Sifferman, C., Tullis, S., Ma, M., Proffitt, R., & Skubic, M. (2019). Depth sensor-based in-home daily activity recognition and assessment system for stroke rehabilitation. In 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 1051–1056). IEEE. https://doi.org/10.1109/BIBM47256.2019.8983376
  • Mortley, J., Wade, J., & Enderby, P. (2004). Superhighway to promoting a client-therapist partnership? Using the Internet to deliver word-retrieval computer therapy, monitored remotely with minimal speech and language therapy input. Aphasiology, 18(3), 193–211. https://doi.org/10.1080/02687030344000553
  • Mubin, O., Alnajjar, F., Jishtu, N., Alsinglawi, B., & Mahmud, A. A. (2019). Exoskeletons with virtual reality, augmented reality, and gamification for stroke patients’ rehabilitation: Systematic review. JMIR rehabilitation and assistive technologies, 6(2), e12010. https://doi.org/10.2196/12010
  • Muñoz-Organero, M., Parker, J., Powell, L., Davies, R., & Mawson, S. (2017). Sensor optimization in smart insoles for post-stroke gait asymmetries using total variation and L1 distances. IEEE Sensors Journal, 17(10), 3142–3151. https://doi.org/10.1109/jsen.2017.2686641
  • Ng, T., Harrington, C., & Reaves, E. L. (2015). Medicaid home and community-based services programs: 2012 data update. Kaiser Family Foundation.
  • Nikolova, S., Boyd-Graber, J., Fellbaum, C., & Cook, P. (2009). Better vocabularies for assistive communication aids: Connecting terms using semantic networks and untrained annotators. In Proceedings of the 11th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 171–178). Association for Computing Machinery.
  • Obiorah, M. G., Piper, A. M., & Horn, M. (2017). Independent word discovery for people with aphasia. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 325–326). Association for Computing Machinery. https://doi.org/10.1145/3132525.3134790
  • Obiorah, M. G., Piper, A. M. M., & Horn, M. (2021). Designing AACs for people with aphasia dining in restaurants. In Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems (pp. 1–14). Association for Computing Machinery.
  • Olesh, E. V., Yakovenko, S., & Gritsenko, V. (2014). Automated assessment of upper extremity movement impairment due to stroke. PLOS One, 9(8), e104487. https://doi.org/10.1371/journal.pone.0104487
  • Øra, H. P., Kirmess, M., Brady, M. C., Partee, I., Hognestad, R. B., Johannessen, B. B., Thommessen, B., & Becker, F. (2020). The effect of augmented speech-language therapy delivered by telerehabilitation on poststroke aphasia-a pilot randomized controlled trial. Clinical Rehabilitation, 34(3), 369–381. https://doi.org/10.1177/0269215519896616
  • Palsbo, S. E. (2007). Equivalence of functional communication assessment in speech pathology using videoconferencing. Journal of Telemedicine and Telecare, 13(1), 40–43. https://doi.org/10.1258/135763307779701121
  • Patel, R., Pilato, S., & Roy, D. (2004). Beyond linear syntax: An image-oriented communication aid. Assistive Technology Outcomes and Benefits, 1(1), 57–66.
  • Peters, D. M., O’Brien, E. S., Kamrud, K. E., Roberts, S. M., Rooney, T. A., Thibodeau, K. P., Balakrishnan, S., Gell, N., & Mohapatra, S. (2021). Utilization of wearable technology to assess gait and mobility post-stroke: A systematic review. Journal of Neuroengineering and Rehabilitation, 18(1), 67. https://doi.org/10.1186/s12984-021-00863-x
  • Picano, C., Quadrini, A., Pisano, F., & Marangolo, P. (2021). Adjunctive approaches to aphasia rehabilitation: A review on efficacy and safety. Brain Sciences, 11(1), 41. https://doi.org/10.3390/brainsci11010041
  • Pierce, L. L., Steiner, V., Govoni, A. L., Hicks, B., Thompson, T. L. C., & Friedemann, M.-L. (2004). Internet-based support for rural caregivers of persons with stroke shows promise. Rehabilitation Nursing : The Official Journal of the Association of Rehabilitation Nurses, 29(3), 95–99. https://doi.org/10.1002/j.2048-7940.2004.tb00319.x
  • Piron, L., Tonin, P., Trivello, E., Battistin, L., & Dam, M. (2004). Motor tele-rehabilitation in post-stroke patients. Medical Informatics and the Internet in Medicine, 29(2), 119–125. https://doi.org/10.1080/14639230410001723428
  • Piron, L., Turolla, A., Agostini, M., Zucconi, C., Cortese, F., Zampolini, M., Zannini, M., Dam, M., Ventura, L., Battauz, M., & Tonin, P. (2009). Exercises for paretic upper limb after stroke: A combined virtual-reality and telemedicine approach. Journal of Rehabilitation Medicine, 41(12), 1016–1102. https://doi.org/10.2340/16501977-0459
  • Pitt, R., Theodoros, D., Hill, A. J., & Russell, T. (2019). The development and feasibility of an online aphasia group intervention and networking program – TeleGAIN. International Journal of Speech-Language Pathology, 21(1), 23–36. https://doi.org/10.1080/17549507.2017.1369567
  • Prange, G. B., Jannink, M. J. A., Groothuis-Oudshoorn, C. G. M., Hermens, H. J., & Ijzerman, M. J. (2006). Systematic review of the effect of robot-aided therapy on recovery of the hemiparetic arm after stroke. Journal of Rehabilitation Research and Development, 43(2), 171–184. https://doi.org/10.1682/jrrd.2005.04.0076
  • Prvu Bettger, J., McCoy, L., Smith, E. E., Fonarow, G. C., Schwamm, L. H., & Peterson, E. D. (2015). Contemporary trends and predictors of postacute service use and routine discharge home after stroke. Journal of the American Heart Association, 4(2), e001038. https://doi.org/10.1161/JAHA.114.001038
  • Pucciarelli, G., Ausili, D., Rebora, P., Arisido, M. W., Simeone, S., Alvaro, R., & Vellone, E. (2019). Formal and informal care after stroke: A longitudinal analysis of survivors’ post rehabilitation hospital discharge. Journal of Advanced Nursing, 75(11), 2495–2505. https://doi.org/10.1111/jan.13998
  • Raichle, M. E. (2015). The brain’s default mode network. Annual Review of Neuroscience, 38, 433–447. https://doi.org/10.1146/annurev-neuro-071013-014030
  • Rand, D., Zeilig, G., & Kizony, R. (2015). Rehab-let: Touchscreen tablet for self-training impaired dexterity post stroke: study protocol for a pilot randomized controlled trial. Trials, 16(1), 277. https://doi.org/10.1186/s13063-015-0796-9
  • Rhee, T., Thompson, S., Medeiros, D., dos Anjos, R., & Chalmers, A. (2020). Augmented virtual teleportation for high-fidelity telecollaboration. IEEE Transactions on Visualization and Computer Graphics, 26(5), 1923–1933. https://doi.org/10.1109/TVCG.2020.2973065
  • Russell, T., Jull, G., & Wootton, R. (2003). Can the Internet be used as a medium to evaluate knee angle? Manual Therapy, 8(4), 242–246. https://doi.org/10.1016/s1356-689x(03)00016-x
  • Russell, T. G., Jull, G. A., & Wootton, R. (2003). The diagnostic reliability of Internet-based observational kinematic gait analysis. Journal of Telemedicine and Telecare, 9(2_suppl), 48–51. https://doi.org/10.1258/135763303322596255
  • Russell, T. G., Wootton, R., & Jull, G. A. (2002). Physical outcome measurements via the Internet: Reliability at two Internet speeds. Journal of Telemedicine and Telecare, 8(3_suppl), 50–52. https://doi.org/10.1258/13576330260440853
  • Russo, M. J., Prodan, V., Meda, N. N., Carcavallo, L., Muracioli, A., Sabe, L., Bonamico, L., Allegri, R. F., & Olmos, L. (2017). High-technology augmentative communication for adults with post-stroke aphasia: A systematic review. Expert Review of Medical Devices, 14(5), 355–370. https://doi.org/10.1080/17434440.2017.1324291
  • Salamin, P., Thalmann, D., Vexo, F., & Giroud, S. (2008). Two-arm haptic force-feedbacked aid for the shoulder and elbow telerehabilitation. In D. Hutchison (Eds.), Technologies for E-learning and digital entertainment (Vol. 5093, pp. 381–390). Springer Berlin Heidelberg.
  • Sandberg, C. W. (2017). Hypoconnectivity of resting-state networks in persons with aphasia compared with healthy age-matched adults. Frontiers in Human Neuroscience, 11, 91. https://doi.org/10.3389/fnhum.2017.00091
  • Sanders, Q., Chan, V., Augsburger, R., Cramer, S. C., Reinkensmeyer, D. J., & Do, A. H. (2020). Feasibility of wearable sensing for in-home finger rehabilitation early after stroke. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society, 28(6), 1363–1372. https://doi.org/10.1109/TNSRE.2020.2988177
  • Sandison, M., Phan, K., Casas, R., Nguyen, L., Lum, M., & Pergami-Peries, M. (2020). HandMATE: Wearable robotic hand exoskeleton and integrated android app for at home stroke rehabilitation. In 2020 42nd Annual International Conference of the IEEE Engineering in Medicine Biology Society (EMBC) (pp. 4867–4872). IEEE.
  • Sarsfield, J., Brown, D., Sherkat, N., Langensiepen, C., Lewis, J., Taheri, M., McCollin, C., Barnett, C., Selwood, L., Standen, P., Logan, P., Simcox, C., Killick, C., & Hughes, E. (2019). Clinical assessment of depth sensor based pose estimation algorithms for technology supervised rehabilitation applications. International Journal of Medical Informatics, 121, 30–38. https://doi.org/10.1016/j.ijmedinf.2018.11.001
  • Savard, L., Borstad, A., Tkachuck, J., Lauderdale, D., & Conroy, B. (2003). Telerehabilitation consultations for clients with neurologic diagnoses: Cases from rural Minnesota and American Samoa. NeuroRehabilitation, 18(2), 93–102. https://doi.org/10.3233/NRE-2003-18202
  • Seo, M., Shin, M.-J., Park, T. S., & Park, J.-H. (2020). Clinometric gait analysis using smart insoles in patients with hemiplegia after stroke: Pilot study. JMIR mHealth and uHealth, 8(9), e22208. https://doi.org/10.2196/22208
  • Sheng, B., Wang, X., Hou, M., Huang, J., Xiong, S., & Zhang, Y. (2020). An automated system for motor function assessment in stroke patients using motion sensing technology: A pilot study. Measurement, 161, 107896. https://doi.org/10.1016/j.measurement.2020.107896
  • Shu, J., Tang, X., Niu, F., Xia, C., & Shi, C. (2021). A gravity balancing assistant arm design in 3-d for rehabilitation of stroke patients. In MATEC web of conferences (Vol. 336, p. 02016). EDP Science. https://doi.org/10.1051/matecconf/202133602016
  • Sinanović, O., Mrkonjić, Z., Zukić, S., Vidović, M., & Imamović, K. (2011). Post-stroke language disorders. Acta clinica Croatica, 50(1), 79–94.
  • Singh, N., Saini, M., Anand, S., Kumar, N., Srivastava, M. V. P., & Mehndiratta, A. (2019). Robotic exoskeleton for wrist and fingers joint in post-stroke neuro-rehabilitation for low-resource settings. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(12), 2369–2377. https://doi.org/10.1109/TNSRE.2019.2943005
  • Singh, N., Saini, M., Kumar, N., Srivastava, M. V. P., & Mehndiratta, A. (2021). Evidence of neuroplasticity with robotic hand exoskeleton for post-stroke rehabilitation: A randomized controlled trial. Journal of Neuroengineering and Rehabilitation, 18(1), 76. https://doi.org/10.21203/rs.3.rs-67841/v2
  • Sobrepera, M. J., Lee, V. G., & Johnson, M. J. (2021). The design of Lil’Flo, a socially assistive robot for upper extremity motor assessment and rehabilitation in the community via telepresence. Journal of Rehabilitation and Assistive Technologies Engineering, 8, 205566832110018. https://doi.org/10.1177/20556683211001805
  • Sror, L., Levy-Tzedek, S., Levin, M. F., Berman, S. (2018). Low-cost virtual reality system with passive arm support for stroke rehabilitation. In Workshop on Robots for Assisted Living, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Madrid, October (pp. 1–5). IEEE.
  • Stanica, I.-C., Moldoveanu, F., Portelli, G.-P., Dascalu, M.-I., Moldoveanu, A., & Ristea, M. G. (2020). Flexible virtual reality system for neurorehabilitation and quality of life improvement. Sensors, 20(21), 6045. https://doi.org/10.3390/s20216045
  • Stark, J., Pons, C., & Dániel, C. (2013). Integrating face-to-face language therapy with virtual reality applications for persons with aphasia. In 2013 International Conference on Virtual Rehabilitation (ICVR) (pp. 70–75). IEEE. https://doi.org/10.1109/ICVR.2013.6662087
  • Steinisch, M., Tana, M. G., & Comani, S. (2012). A passive robotic device for VR-augmented upper limb rehabilitation in stroke patients. Biomedical Engineering/Biomedizinische Technik, 57(SI-1-Track-R), 841–844. https://doi.org/10.1515/bmt-2012-4160
  • Stilli, A., Cremoni, A., Bianchi, M., Ridolfi, A., Gerii, F., & Vannetti, F. (2018). AirExGlove — A novel pneumatic exoskeleton glove for adaptive hand rehabilitation in post-stroke patients. In 2018 IEEE International Conference on Soft Robotics (RoboSoft) (pp. 579–584). IEEE. https://doi.org/10.1109/ROBOSOFT.2018.8405388
  • Theodoros, D., Hill, A., Russell, T., Ward, E., & Wootton, R. (2008). Assessing acquired language disorders in adults via the Internet. Telemedicine Journal and e-Health: The Official Journal of the American Telemedicine Association, 14(6), 552–559. https://doi.org/10.1089/tmj.2007.0091
  • Triandafilou, K. M., Tsoupikova, D., Barry, A. J., Thielbar, K. N., Stoykov, N., & Kamper, D. G. (2018). Development of a 3D, networked multi-user virtual reality environment for home therapy after stroke. Journal of Neuroengineering and Rehabilitation, 15(1), 88. https://doi.org/10.1186/s12984-018-0429-0
  • Trinh, H., Waller, A., Vertanen, K., Kristensson, P. O., & Hanson, V. L. (2012). Applying prediction techniques to phoneme-based AAC systems. In Proceedings of the Third Workshop on Speech and Language Processing for Assistive Technologies (pp. 19–27). Association for Computational Linguistics.
  • Trnka, K., McCaw, J., Yarrington, D., McCoy, K. F., & Pennington, C. (2008, April). Word prediction and communication rate in AAC. In Proceedings of the IASTED International Conference on Telehealth/Assistive Technologies (pp. 19–24). Association for Computing Machinery.
  • Trnka, K., Yarrington, D., McCaw, J., McCoy, K. F., & Pennington, C. (2007). The effects of word prediction on communication rate for AAC. In Human Language Technologies 2007: The Conference of the North American Chapter of the Association for Computational Linguistics; Companion Volume, Short Papers (pp. 173–176). Association for Computational Linguistics.
  • Trnka, K., Yarrington, D., McCoy, K., & Pennington, C. (2006). Topic modeling in fringe word prediction for AAC. In Proceedings of the 11th International Conference on Intelligent User Interfaces (pp. 276–278). Association for Computing Machinery. https://doi.org/10.1145/1111449.1111509
  • Trombetta, M., Bazzanello Henrique, P. P., Brum, M. R., Colussi, E. L., De Marchi, A. C. B., & Rieder, R. (2017). Motion Rehab AVE 3D: A VR-based exergame for post-stroke rehabilitation. Computer Methods and Programs in Biomedicine, 151, 15–20. https://doi.org/10.1016/j.cmpb.2017.08.008
  • Uslu, A. S., Gerber, S. M., Schmidt, N., Röthlisberger, C., Wyss, P., Vanbellingen, T., Schaller, S., Wyss, C., Koenig-Bruhin, M., Berger, T., Nyffeler, T., Müri, R., Nef, T., & Urwyler, P. (2020). Investigating a new tablet-based telerehabilitation app in patients with aphasia: A randomised, controlled, evaluator-blinded, multicentre trial protocol. BMJ Open, 10(11), e037702. https://doi.org/10.1136/bmjopen-2020-037702
  • Vamsikrishna, K. M., Dogra, D. P., & Desarkar, M. S. (2016). Computer-vision-assisted palm rehabilitation with supervised learning. IEEE Transactions on Bio-Medical Engineering, 63(5), 991–1001. https://doi.org/10.1109/TBME.2015.2480881
  • Van Vuuren, S., & Cherney, L. R. (2014). A virtual therapist for speech and language therapy. In T. Bickmore, S. Marsella, & C. Sidner (Eds.), Intelligent virtual agents 14th International Conference, IVA 2014, lecture notes in artificial intelligence (Vol. 8637, pp. 438–448). Springer.
  • Vargas, M. (2020). Design and evaluation of a context-adaptive AAC application for people with aphasia. ACM SIGACCESS Accessibility and Computing, 7(123), 1. https://doi.org/10.1145/3386402.3386409
  • Vertanen, K. (2017). Towards Improving Predictive AAC using Crowdsourced Dialogues and Partner Context. In Proceedings of the 19th International ACM SIGACCESS Conference on Computers and Accessibility (pp. 347–348). Association for Computing Machinery. https://doi.org/10.1145/3132525.3134814
  • Vertanen, K., & Kristensson, P. O. (2011). The imagination of crowds: Conversational AAC language modeling using crowdsourcing and large data sources. In Proceedings of the Conference on Empirical Methods in Natural Language Processing (pp. 700–711). Association for Computational Linguistics.
  • Vidović, M., Sinanović, O., Sabaskić, L., Haticić, A., & Brkić, E. (2011). Incidence and types of speech disorders in stroke patients. Acta clinica Croatica, 50(4), 491–494.
  • Vu, T., Tran, H., Song, C., Lin, F., Langan, J., & Cavuoto, L. (2018). BiGRA: A preliminary bilateral hand grip coordination rehabilitation using home-based evaluation system for stroke patients. In 2018 IEEE 15th International Conference on Wearable and Implantable Body Sensor Networks (BSN) (pp. 13–16). IEEE. https://doi.org/10.1109/BSN.2018.8329647
  • Wang, C., Kim, Y., & Min, S. D. (2018). Soft-Material-Based Smart Insoles for a Gait Monitoring System. Materials, 11(12), 2435. https://doi.org/10.3390/ma11122435
  • Wang, D., Meng, Q., Meng, Q., Li, X., & Yu, H. (2018). Design and development of a portable exoskeleton for hand rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society, 26(12), 2376–2386. https://doi.org/10.1109/TNSRE.2018.2878778
  • Wang, J., Chellali, A., & Cao, C. G. L. (2016). Haptic communication in collaborative virtual environments. Human Factors: The Journal of the Human Factors and Ergonomics Society, 58(3), 496–508. https://doi.org/10.1177/0018720815618808
  • Wang, Q., Markopoulos, P., Yu, B., Chen, W., & Timmermans, A. (2017). Interactive wearable systems for upper body rehabilitation: A systematic review. Journal of Neuroengineering and Rehabilitation, 14(1), 20. https://doi.org/10.1186/s12984-017-0229-y
  • Wark, T., Karunanithi, M., & Chan, W. (2005). A framework for linking gait characteristics of patients with accelerations of the waist. In 2005 IEEE Engineering in Medicine and Biology 27th Annual Conference (pp. 7695–7698). IEEE.
  • Washabaugh, E. P., Guo, J., Chang, C.-K., Remy, C. D., & Krishnan, C. (2019). A portable passive rehabilitation robot for upper-extremity functional resistance training. IEEE Transactions on Bio-Medical Engineering, 66(2), 496–508. https://doi.org/10.1109/TBME.2018.2849580
  • Weber, L. M., & Stein, J. (2018). The use of robots in stroke rehabilitation: A narrative review. NeuroRehabilitation, 43(1), 99–110. https://doi.org/10.3233/NRE-172408
  • Whittaker, F., & Wade, V. (2014). The costs and benefits of technology-enabled, home-based cardiac rehabilitation measured in a randomised controlled trial. Journal of Telemedicine and Telecare, 20(7), 419–422. https://doi.org/10.1177/1357633X14552376
  • Wiegand, K., & Patel, R. (2012). Non-syntactic word prediction for AAC. In Proceedings of the third workshop on speech and language processing for assistive technologies (pp. 28–36). Association for Computational Linguistics.
  • Wittmann, F., Held, J. P., Lambercy, O., Starkey, M. L., Curt, A., Höver, R., Gassert, R., Luft, A. R., & Gonzenbach, R. R. (2016). Self-directed arm therapy at home after stroke with a sensor-based virtual reality training system. Journal of Neuroengineering and Rehabilitation, 13(1), 75. https://doi.org/10.1186/s12984-016-0182-1
  • Wu, Q., Wang, X., Chen, B., & Wu, H. (2018). Patient-active control of a powered exoskeleton targeting upper limb rehabilitation training. Frontiers in Neurology, 9, 817. https://doi.org/10.3389/fneur.2018.00817
  • Xu, Y., Tong, M., Ming, W.-K., Lin, Y., Mai, W., Huang, W., & Chen, Z. (2021). A depth camera-based, task-specific virtual reality rehabilitation game for patients with stroke: Pilot usability study. JMIR Serious Games, 9(1), e20916. https://doi.org/10.2196/20916
  • Yang, G., Deng, J., Pang, G., Zhang, H., Li, J., Deng, B., Pang, Z., Xu, J., Jiang, M., Liljeberg, P., Xie, H., & Yang, H. (2018). An IoT-enabled stroke rehabilitation system based on smart wearable armband and machine learning. IEEE Journal of Translational Engineering in Health and Medicine, 6, 1–10. https://doi.org/10.1109/jtehm.2018.2822681
  • Yap, H. K., Lim, J. H., Nasrallah, F., & Yeow, C.-H. (2017). Design and preliminary feasibility study of a soft robotic glove for hand function assistance in stroke survivors. Frontiers in Neuroscience, 11, 547. https://doi.org/10.3389/fnins.2017.00547
  • Yeh, S.-C., Rizzo, A., Zhu, W., Stewart, J., McLaughlin, M., Cohen, I. (2005). An integrated system: virtual reality, haptics and modern sensing technique (VHS) for post-stroke rehabilitation. In Proceedings of the ACM symposium on virtual reality software and technology - VRST ’05 (p. 59). ACM Press.
  • Yu, L., Xiong, D., Guo, L., & Wang, J. (2016). A remote quantitative Fugl-Meyer assessment framework for stroke patients based on wearable sensor networks. Computer Methods and Programs in Biomedicine, 128, 100–110. https://doi.org/10.1016/j.cmpb.2016.02.012
  • Zeiaee, A., Soltani-Zarrin, R., Langari, R., & Tafreshi, R. (2017). Design and kinematic analysis of a novel upper limb exoskeleton for rehabilitation of stroke patients. In 2017 International Conference on Rehabilitation Robotics (ICORR) (pp. 759–764). IEEE.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.