845
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Measuring Designers’ Cognitive Load for Timely Knowledge Push via Eye Tracking

ORCID Icon & ORCID Icon
Pages 1230-1243 | Received 24 Mar 2021, Accepted 17 Mar 2022, Published online: 20 Apr 2022

References

  • Ahlstrom, U., & Friedman-Berg, F. J. (2006). Using eye movement activity as a correlate of cognitive workload. International Journal of Industrial Ergonomics, 36(7), 623–636. https://doi.org/10.1016/j.ergon.2006.04.002.
  • Altin Gumussoy, C., Pekpazar, A., Esengun, M., Bayraktaroglu, A. E., & Ince, G. (2022). Usability evaluation of TV interfaces: Subjective evaluation vs. objective evaluation. International Journal of Human–Computer Interaction, 38(7), 661–619. https://doi.org/10.1080/10447318.2021.1960093.
  • Andrzejewska, M., & Stolińska, A. (2016). Comparing the difficulty of tasks using eye tracking combined with subjective and behavioural criteria. Journal of Eye Movement Research, 9(3), 3–16. https://doi.org/10.16910/jemr.9.3.3.
  • Baekgaard, P., Jalaliniya, S., & Hansen, J. P. (2019). Pupillary measurement during an assembly task. Applied Ergonomics, 75, 99–107. https://doi.org/10.1016/j.apergo.2018.09.004.
  • Čegovnik, T., Stojmenova, K., Jakus, G., & Sodnik, J. (2018). An analysis of the suitability of a low-cost eye tracker for assessing the cognitive load of drivers. Applied Ergonomics, 68, 1–11. https://doi.org/10.1016/j.apergo.2017.10.011.
  • Chen, S., & Epps, J. (2014). Efficient and robust pupil size and blink estimation from near-field video sequences for human-machine interaction. IEEE Transactions on Cybernetics, 44(12), 2356–2367. https://doi.org/10.1109/TCYB.2014.2306916.
  • Chen, S., Epps, J., & Chen, F. (2013). Automatic and continuous user task analysis via eye activity. Proceedings of The 2013 International Conference on Intelligent user interfaces, Santa Monica, California, USA.
  • Di Stasi, L. L., Diaz-Piedra, C., Rieiro, H., Sanchez Carrion, J. M., Martin Berrido, M., Olivares, G., & Catena, A. (2016). Gaze entropy reflects surgical task load. Surgical Endoscopy, 30(11), 5034–5043. https://doi.org/10.1007/s00464-016-4851-8.
  • Diaz-Piedra, C., Rieiro, H., Cherino, A., Fuentes, L. J., Catena, A., & Di Stasi, L. L. (2019). The effects of flight complexity on gaze entropy: An experimental study with fighter pilots. Applied Ergonomics, 77, 92–99. https://doi.org/10.1016/j.apergo.2019.01.012.
  • Doherty-Sneddon, G., & Phelps, F. G. (2005). Gaze aversion: A response to cognitive or social difficulty? Memory & Cognition, 33(4), 727–733. https://doi.org/10.3758/BF03195338.
  • Ehrlichman, H., & Micic, D. (2012). Why do people move their eyes when they think? Current Directions in Psychological Science, 21(2), 96–100. https://doi.org/10.1177/0963721412436810.
  • Gao, X., Tong, S., Zhang, X., Li, J., Wang, K. (2018). Behaviour pattern when designers have difficulties. Proceedings – 2018 IEEE International Conference on Systems, Man, and Cybernetics, SMC 2018. IEEE.
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload (Vol. 52, pp. 139–183). Elsevier Science.
  • Hess, E. H., & Polt, J. M. (1964). Pupil size in relation to mental activity during simple problem-solving. Science, 143(3611), 1190–1192. https://doi.org/10.1126/science.143.3611.1190.
  • Irwin, D. E., & Thomas, L. E. (2011). Eyeblinks and cognition. In V. Coltheart (Ed.), Tutorials in visual cognition (pp. 121–141). Taylor and Francis.
  • Krejtz, K., Duchowski, A. T., Niedzielska, A., Biele, C., & Krejtz, I. (2018). Eye tracking cognitive load using pupil diameter and microsaccades with fixed gaze. PLOS One, 13(9), e0203629. https://doi.org/10.1371/journal.pone.0203629.
  • Liang, Y., Liu, X., Qiu, L., & Zhang, S. (2018). An EEG study of a confusing state induced by information insufficiency during mathematical problem-solving and reasoning. Computational Intelligence and Neuroscience, 2018, 1943565. https://doi.org/10.1155/2018/1943565.
  • Liang, Y., Qiu, L., Liu, X., Zhang, S., & Tan, J. (2020). Technology for product design knowledge need awareness based on design context and brain-computer interface. Journal of Mechanical Engineering, 56(7), 151–163. https://doi.org/10.3901/jme.2020.07.151.
  • Lin, F.-R., & Kao, C.-M. (2018). Mental effort detection using EEG data in E-learning contexts. Computers & Education, 122, 63–79. https://doi.org/10.1016/j.compedu.2018.03.020
  • Lin, J. J. H., & Lin, S. S. J. (2018). Integrating eye trackers with handwriting tablets to discover difficulties of solving geometry problems. British Journal of Educational Technology, 49(1), 17–29. https://doi.org/10.1111/bjet.12517.
  • Liu, X., Chen, F., Xie, G., & Liu, G. (2016). Contact-free cognitive load recognition based on eye movement. Journal of Electrical and Computer Engineering, 2016, 1–8. https://doi.org/10.1155/2016/1601879.
  • Lohani, M., Payne, B. R., & Strayer, D. L. (2019). A review of psychophysiological measures to assess cognitive states in real-world driving. Frontiers in Human Neuroscience, 13, 57. https://doi.org/10.3389/fnhum.2019.00057.
  • Marinescu, A. C., Sharples, S., Ritchie, A. C., Sanchez Lopez, T., McDowell, M., & Morvan, H. P. (2018). Physiological parameter response to variation of mental workload. Human Factors, 60(1), 31–56. https://doi.org/10.1177/0018720817733101.
  • Marshall, S. P. (2007). Identifying cognitive state from eye metrics. Aviation, Space, and Environmental Medicine, 78(5 Suppl), B165–B175.
  • Martin, S. (2014). Measuring cognitive load and cognition: Metrics for technology-enhanced learning. Educational Research and Evaluation, 20(7–8), 592–621. https://doi.org/10.1080/13803611.2014.997140.
  • Morales, J. M., Ruiz-Rabelo, J. F., Diaz-Piedra, C., & Di Stasi, L. L. (2019). Detecting mental workload in surgical teams using a wearable single-channel electroencephalographic device. Journal of Surgical Education, 76(4), 1107–1115. https://doi.org/10.1016/j.jsurg.2019.01.005.
  • Mosaly, P. R., Mazur, L. M., Yu, F., Guo, H., Derek, M., Laidlaw, D. H., Moore, C., Marks, L. B., & Mostafa, J. (2018). Relating task demand, mental effort and task difficulty with physicians’ performance during interactions with electronic health records (EHRs). International Journal of Human–Computer Interaction, 34(5), 467–475. https://doi.org/10.1080/10447318.2017.1365459.
  • Müller-Wuttke, M., & Müller, N. H. (2019). Cognitive load levels while learning with or without a pedagogical agent. In P. Zaphiris & A. Ioannou (Eds.), Learning and collaboration technologies. designing learning experiences (Vol. 11590, pp. 266–276). Springer.
  • Mutlu-Bayraktar, D., Cosgun, V., & Altan, T. (2019). Cognitive load in multimedia learning environments: A systematic review. Computers & Education, 141, 103618. https://doi.org/10.1016/j.compedu.2019.103618.
  • Paas, F. G. W. C., & Van Merriënboer, J. J. G. (1994). Instructional control of cognitive load in the training of complex cognitive tasks. Educational Psychology Review, 6(4), 351–371. https://doi.org/10.1007/BF02213420.
  • Paas, F., Tuovinen, J. E., Tabbers, H., & Van Gerven, P. W. M. (2003). Cognitive load measurement as a means to advance cognitive load theory. Educational Psychologist, 38(1), 63–71. https://doi.org/10.1207/s15326985ep3801_8.
  • Pedrotti, M., Mirzaei, M. A., Tedesco, A., Chardonnet, J.-R., Mérienne, F., Benedetto, S., & Baccino, T. (2014). Automatic stress classification with pupil diameter analysis. International Journal of Human-Computer Interaction, 30(3), 220–236. https://doi.org/10.1080/10447318.2013.848320.
  • Rayner, K. (1998). Eye movements in reading and information processing: 20 Years of research. Psychological Bulletin, 124(3), 372–422. https://doi.org/10.1037/0033-2909.124.3.372.
  • Ren, P., Ma, X., Lai, W., Zhang, M., Liu, S., Wang, Y., Li, M., Ma, D., Dong, Y., He, Y., & Xu, X. (2019). Comparison of the use of blink rate and blink rate variability for mental state recognition. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(5), 867–875. https://doi.org/10.1109/TNSRE.2019.2906371.
  • Robinson, M. A. (2010). An empirical analysis of engineers' information behaviors. Journal of the American Society for Information Science and Technology, 61(4), 640–658. https://doi.org/10.1002/asi.21290.
  • Shiferaw, B., Downey, L., & Crewther, D. (2019). A review of gaze entropy as a measure of visual scanning efficiency. Neuroscience and Biobehavioral Reviews, 96, 353–366. https://doi.org/10.1016/j.neubiorev.2018.12.007.
  • Souchet, A. D., Philippe, S., Lourdeaux, D., & Leroy, L. (2021). Measuring visual fatigue and cognitive load via eye tracking while learning with virtual reality head-mounted displays: A review. International Journal of Human–Computer Interaction, 1–24. https://doi.org/10.1080/10447318.2021.1976509.
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7.
  • Thorvald, P., Lindblom, J., & Andreasson, R. (2019). On the development of a method for cognitive load assessment in manufacturing. Robotics and Computer-Integrated Manufacturing, 59, 252–266. https://doi.org/10.1016/j.rcim.2019.04.012.
  • Zhang, K., Zhao, W., Wang, J., Chen, L., Wang, C., & Guo, X. (2016). Research on knowledge support technology for product innovation design based on quality function knowledge deployment. Advances in Mechanical Engineering, 8(6), 1–19. https://doi.org/10.1177/1687814016651795.
  • Zhang, L., Shao, S., Chen, S., Li, X., Jiang, R., & Li, Z. (2021). Individualized and accurate eco-design knowledge push for designers: a CAD-based feedback knowledge push method for the eco-design. Concurrent Engineering, 29(2), 153–168. https://doi.org/10.1177/1063293X20985539.
  • Zhang, L., Zheng, Y., Jin, Z., & Jiang, R. (2019). Knowledge-based active push system for ecological design. Procedia CIRP, 80, 39–44. https://doi.org/10.1016/j.procir.2019.01.027.
  • Zhang, S. Y., Gu, Y., Liu, X. J., & Tan, J. R. (2018). A knowledge push technology based on applicable probability matching and multidimensional context driving. Frontiers of Information Technology & Electronic Engineering, 19(2), 235–245. https://doi.org/10.1631/Fitee.1700763.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.