373
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Working Memory Capacity for Gesture-Command Associations in Gestural Interaction

, , , & ORCID Icon
Pages 3045-3056 | Received 25 Feb 2022, Accepted 14 Jun 2022, Published online: 17 Jul 2022

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
  • Anderson, F., & Bischof, W. F. (2013). Learning and performance with gesture guides [Paper presentation]. Paper presented at the Proceedings of the SIGCHI Conference on Human Factors in Computing Systems.
  • Awh, E., Barton, B., & Vogel, E. K. (2007). Visual working memory represents a fixed number of items regardless of complexity. Psychological science, 18(7), 622–628.
  • Baddeley, A. D. (2012). Working memory: Theories, models, and controversies. Annual Review of Psychology, 63(1), 1–29. https://doi.org/10.1146/annurev-psych-120710-100422
  • Baddeley, A. D., & Hitch, G. (1974). Working memory: Psychology of learning and motivation (Vol. 8, pp. 47–89). Elsevier.
  • Bianchiberthouze, N., Kim, W. W., & Patel, D. (2007). Does body movement engage you more in digital game play? And why? [Paper presentation]. Paper presented at the Affective Computing and Intelligent Interaction.
  • Boutla, M., Supalla, T., Newport, E. L., & Bavelier, D. (2004). Short-term memory span: Insights from sign language. Nature Neuroscience, 7(9), 997–1002. https://doi.org/10.1038/nn1298
  • Brady, T. F., Störmer, V. S., & Alvarez, G. A. (2016). Working memory is not fixed-capacity: More active storage capacity for real-world objects than for simple stimuli. Proceedings of the National Academy of Sciences of the United States of America, 113(27), 7459–7464. https://doi.org/10.1073/pnas.1520027113
  • Broadway, J. M., & Engle, R. W. (2010). Validating running memory span: Measurement of working memory capacity and links with fluid intelligence. Behavior Research Methods, 42(2), 563–570. https://doi.org/10.3758/BRM.42.2.563
  • Bunting, M., Cowan, N., & Scott Saults, J. (2006). How does running memory span work? Quarterly Journal of Experimental Psychology, 59(10), 1691–1700. https://doi.org/10.1080/17470210600848402
  • Cao, X., & Zhai, S. (2007). Modeling human performance of pen stroke gestures [Paper presentation]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, San Jose, California, USA. https://doi.org/10.1145/1240624.1240850
  • Chen, Z., Ma, X., Peng, Z., Zhou, Y., Yao, M., Ma, Z., Wang, C., Gao, Z., & Shen, M. (2018). User-defined gestures for gestural interaction: Extending from hands to other body parts. International Journal of Human–Computer Interaction, 34(3), 238–250. https://doi.org/10.1080/10447318.2017.1342943
  • Choi, E., Kwon, S., Lee, D., Lee, H., Chung, M. K. (2012). Can user-derived gesture be considered as the best gesture for a command?: Focusing on the commands for smart home system. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 1253–1257. https://doi.org/10.1177/1071181312561222
  • Cohen, M. S., Elmqvist, N., Plaisant, C., Jacobs, S. M., & Shneiderman, B. (2018). Designing the user interface: Strategies for effective human-computer interaction. Pearson.
  • Cowan, N. (2001). The magical number 4 in short-term memory: A reconsideration of mental storage capacity. The Behavioral and Brain Sciences, 24(1), 87–114. https://doi.org/10.1017/s0140525x01003922
  • Cowan, N. (2016). Working memory capacity (Classic edition). Routledge.
  • Curby, K. M., & Gauthier, I. (2007). A visual short-term memory advantage for faces. Psychonomic Bulletin & Review, 14(4), 620–628. https://doi.org/10.3758/bf03196811
  • Dahlin, E., Neely, A. S., Larsson, A., Bäckman, L., & Nyberg, L. (2008). Transfer of learning after updating training mediated by the striatum. Science, 320(5882), 1510–1512. https://doi.org/10.1126/science.1155466
  • Ding, X., Zhao, Y., Wu, F., Lu, X., Gao, Z., & Shen, M. (2015). Binding biological motion and visual features in working memory. Journal of Experimental Psychology. Human Perception and Performance, 41(3), 850–865. https://doi.org/10.1037/xhp0000061
  • Dong, H., Danesh, A., Figueroa, N., & Saddik, A. E. (2015). An elicitation study on gesture preferences and memorability toward a practical hand-gesture vocabulary for smart televisions. IEEE Access, 3, 543–555. https://doi.org/10.1109/ACCESS.2015.2432679
  • Emmorey, K., Giezen, M. R., Petrich, J. A. F., Spurgeon, E., & O'Grady Farnady, L. (2017). The relation between working memory and language comprehension in signers and speakers. Acta Psychologica, 177, 69–77. https://doi.org/10.1016/j.actpsy.2017.04.014
  • Eng, H. Y., Chen, D., & Jiang, Y. (2005). Visual working memory for simple and complex visual stimuli. Psychonomic Bulletin & Review, 12(6), 1127–1133. https://doi.org/10.3758/bf03206454
  • Forsberg, A., Guitard, D., & Cowan, N. (2021). Working memory limits severely constrain long-term retention. Psychonomic Bulletin & Review, 28(2), 537–547. https://doi.org/10.3758/s13423-020-01847-z
  • Fukuda, K., & Vogel, E. K. (2019). Visual short-term memory capacity predicts the “bandwidth” of visual long-term memory encoding. Memory & Cognition, 47(8), 1481–1497. https://doi.org/10.3758/s13421-019-00954-0
  • Gao, Z., Li, J., Liang, J., Chen, H., Yin, J., & Shen, M. (2009). Storing fine detailed information in visual working memory—Evidence from event-related potentials. Journal of Vision, 9(7), 17–17. https://doi.org/10.1167/9.7.17
  • Gao, Z., Wu, F., Qiu, F., He, K., Yang, Y., & Shen, M. (2017). Bindings in working memory: The role of object-based attention. Attention, Perception & Psychophysics, 79(2), 533–552. https://doi.org/10.3758/s13414-016-1227-z
  • Gibson, J. J. (1978). The ecological approach to the visual perception of pictures. Leonardo, 11(3), 227–235. https://doi.org/10.2307/1574154
  • Graichen, L., Graichen, M., & Krems, J. F. (2019). Evaluation of gesture-based in-vehicle interaction: User experience and the potential to reduce driver distraction. Human Factors, 61(5), 774–792. https://doi.org/10.1177/0018720818824253
  • GrandViewResearch. (2019). Gesture recognition market size, share & trends analysis report by technology (touch-based, touchless), by industry (automotive, consumer electronics, healthcare), and segment forecasts (GVR-2-68038-019-4). https://www.grandviewresearch.com/industry-analysis/gesture-recognition-market.
  • Greenwald, A. G. (1972). On doing two things at once: Time sharing as a function of ideomotor compatibility. Journal of Experimental Psychology, 94(1), 52–57. https://doi.org/10.1037/h0032762
  • Gregoriades, A., Sutcliffe, A., Papageorgiou, G., & Louvieris, P. (2010). Human-centered safety analysis of prospective road designs. IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans, 40(2), 236–250. https://doi.org/10.1109/TSMCA.2009.2037011
  • Hardman, K. O., & Cowan, N. (2015). Remembering complex objects in visual working memory: Do capacity limits restrict objects or features? Journal of Experimental Psychology. Learning, Memory, and Cognition, 41(2), 325–347. https://doi.org/10.1037/xlm0000031
  • Harrison, R., Flood, D., & Duce, D. (2013). Usability of mobile applications: Literature review and rationale for a new usability model. Journal of Interaction Science, 1(1), 1. https://doi.org/10.1186/2194-0827-1-1
  • He, J., Guo, D., Zhai, S., Shen, M., & Gao, Z. (2019). Development of social working memory in preschoolers and its relation to theory of mind. Child Development, 90(4), 1319–1332. https://doi.org/10.1111/cdev.13025
  • Hitch, G., Towse, J., & Hutton, U. (2001). What limits working memory span? Theoretical accounts and applications for scholastic development. Journal of Experimental Psychology: General, 130(2), 184–198. https://doi.org/10.1037/0096-3445.130.2.184
  • Hornstein, S. L., & Mulligan, N. W. (2004). Memory for actions: Enactment and source memory. Psychonomic Bulletin & Review, 11(2), 367–372. https://doi.org/10.3758/bf03196584
  • Janczyk, M., Xiong, A., & Proctor, R. W. (2019). Stimulus-response and response-effect compatibility with touchless gestures and moving action effects. Human Factors, 61(8), 1297–1314. https://doi.org/10.1177/0018720819831814
  • JASP Team. (2020). JASP (Version 0.14.1) [Computer software]. https://jasp-stats.org/2020/12/17/jasp-0-14-1-minor-updates/
  • Jeffreys, H. (1998). Theory of probability (3rd ed.). Clarendon Press; Oxford University Press.
  • Jégo, J., Paljic, A., & Fuchs, P. (2013). User-defined gestural interaction: A study on gesture memorization [Paper presentation]. Paper presented at the 2013 IEEE Symposium on 3D User Interfaces (3DUI). https://doi.org/10.1109/3DUI.2013.6550189
  • Jiang, Y. V., Shim, W. M., & Makovski, T. (2008). Visual working memory for line orientations and face identities. Perception & Psychophysics, 70(8), 1581–1591. https://doi.org/10.3758/PP.70.8.1581
  • Just, M. A., & Carpenter, P. A. (1992). A capacity theory of comprehension: Individual differences in working memory. Psychological Review, 99(1), 122–149. https://doi.org/10.1037/0033-295x.99.1.122
  • Koutsabasis, P., & Vogiatzidakis, P. (2019). Empirical research in mid-air interaction: A systematic review. International Journal of Human–Computer Interaction, 35(18), 1747–1768. https://doi.org/10.1080/10447318.2019.1572352
  • Kyllonen, P. C., & Christal, R. E. (1990). Reasoning ability is (little more than) working-memory capacity? ! Intelligence, 14(4), 389–433. https://doi.org/10.1016/S0160-2896(05)80012-1
  • Leather, C. V., & Henry, L. A. (1994). Working memory span and phonological awareness tasks as predictors of early reading ability. Journal of Experimental Child Psychology, 58(1), 88–111. https://doi.org/10.1006/jecp.1994.1027
  • Leiva, L. A., Vatavu, R.-D., Martín-Albo, D., & Plamondon, R. (2020). Omnis Praedictio: Estimating the full spectrum of human performance with stroke gestures. International Journal of Human-Computer Studies, 142, 102466. https://doi.org/10.1016/j.ijhcs.2020.102466
  • Liang, S.-F M. (2013). Control with hand gestures in home environment: A review. In Y.-K. Lin (Ed.), Proceedings of the Institute of Industrial Engineers Asian Conference 2013 (pp. 837–843). Springer Singapore.
  • Linck, J. A., Osthus, P., Koeth, J. T., & Bunting, M. F. (2014). Working memory and second language comprehension and production: A meta-analysis. Psychonomic Bulletin & Review, 21(4), 861–883. https://doi.org/10.3758/s13423-013-0565-2
  • Logie, R., Camos, V., & Cowan, N. (2020). Working memory: The state of the science. Oxford University Press.
  • Lorenc, E. S., Pratte, M. S., Angeloni, C. F., & Tong, F. (2014). Expertise for upright faces improves the precision but not the capacity of visual working memory. Attention, Perception, & Psychophysics, 76(7), 1975–1984. https://doi.org/10.3758/s13414-014-0653-z
  • Luck, S. J., & Vogel, E. K. (1997). The capacity of visual working memory for features and conjunctions. Nature, 390(6657), 279–281. https://doi.org/10.1038/36846
  • Luck, S. J., & Vogel, E. K. (2013). Visual working memory capacity: From psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences, 17(8), 391–400. https://doi.org/10.1016/j.tics.2013.06.006
  • Luria, R., Sessa, P., Gotler, A., Jolicoeur, P., & Dell'Acqua, R. (2010). Visual short-term memory capacity for simple and complex objects. Journal of Cognitive Neuroscience, 22(3), 496–512. https://doi.org/10.1162/jocn.2009.21214
  • Maxwell, J. P., Masters, R. S. W., & Eves, F. F. (2003). The role of working memory in motor learning and performance. Consciousness and Cognition, 12(3), 376–402. https://doi.org/10.1016/S1053-8100(03)00005-9
  • Meconi, F., Luria, R., & Sessa, P. (2014). Individual differences in anxiety predict neural measures of visual working memory for untrustworthy faces. Social Cognitive and Affective Neuroscience, 9(12), 1872–1879. https://doi.org/10.1093/scan/nst189
  • Miller, G. A. (1956). The magic number seven, plus minus two. Psychological Review, 63(2), 81–96. https://doi.org/10.1037/h0043158
  • Morris, M. R., Wobbrock, J. O., Wilson, A. D. (2010). Understanding users' preferences for surface gestures [Paper presentation]. Paper presented at the Proceedings of Graphics Interface 2010, Ottawa, Ontario, Canada.
  • Nacenta, M. A., Kamber, Y., Qiang, Y., & Kristensson, P. O. (2013). Memorability of pre-designed and user-defined gesture sets [Paper presentation]. Paper presented at the Human Factors in Computing Systems. https://doi.org/10.1145/2470654.2466142
  • Norman, D. A. (2004). Emotional design: Why we love (or hate) everyday things. Basic Books.
  • Norman, D. A., & Nielsen, J. (2010). Gestural interfaces: A step backward in usability. Interactions, 17(5), 46–49. https://doi.org/10.1145/1836216.1836228
  • Oberauer, K., Farrell, S., Jarrold, C., & Lewandowsky, S. (2016). What limits working memory capacity? Psychological Bulletin, 142(7), 758–799. https://doi.org/10.1037/bul0000046
  • Pang, X., Guo, R., Yao, N., Yu, J., Yu, S., Wang, C., & Gao, Z. (2014). Human factor studies on gestural interaction: Past, present, and future. Chinese Journal of Applied Psychology, 20(3), 243–251. https://doi.org/10.3969/j.issn.1006-6020.2014.03.007
  • Pantic, M., Pentland, A., Nijholt, A., & Huang, T. S. (2007). Human computing and machine understanding of human behavior: A survey [Paper presentation]. Paper presented at the International Joint Conference on Artificial Intelligence.
  • Pereira, A., Wachs, J. P., Park, K., & Rempel, D. (2015). A user-developed 3-D hand gesture set for human-computer interaction. Human Factors, 57(4), 607–621. https://doi.org/10.1177/0018720814559307
  • Proctor, R. W., & Vu, K.-P L. (2016). Principles for designing interfaces compatible with human information processing. International Journal of Human-Computer Interaction, 32(1), 2–22. https://doi.org/10.1080/10447318.2016.1105009
  • Revell, K. M., & Stanton, N. A. (2017). Mental models: Design of user interaction and interfaces for domestic energy systems. CRC Press.
  • Rouder, J. N., Morey, R. D., Morey, C. C., & Cowan, N. (2011). How to measure working memory capacity in the change detection paradigm. Psychonomic Bulletin & Review, 18(2), 324–330. https://doi.org/10.3758/s13423-011-0055-3
  • Rouder, J. N., Morey, R. D., Speckman, P. L., & Province, J. M. (2012). Default Bayes factors for ANOVA designs. Journal of Mathematical Psychology, 56(5), 356–374. https://doi.org/10.1016/j.jmp.2012.08.001
  • Rouder, J. N., Speckman, P. L., Sun, D., Morey, R. D., & Iverson, G. (2009). Bayesian t tests for accepting and rejecting the null hypothesis. Psychonomic Bulletin & Review, 16(2), 225–237. https://doi.org/10.3758/PBR.16.2.225
  • Schönbrodt, F. D., Wagenmakers, E. J., Zehetleitner, M., & Perugini, M. (2017). Sequential hypothesis testing with Bayes factors: Efficiently testing mean differences. Psychological Methods, 22(2), 322–339. https://doi.org/10.1037/met0000061
  • Schurgin, M. W., & Brady, T. F. (2019). When “capacity” changes with set size: Ensemble representations support the detection of across-category changes in visual working memory. Journal of Vision, 19(5), 3–3. https://doi.org/10.1167/19.5.3
  • Shen, M., Gao, Z., Ding, X., Zhou, B., & Huang, X. (2014). Holding biological motion information in working memory. Journal of Experimental Psychology. Human Perception and Performance, 40(4), 1332–1345. https://doi.org/10.1037/a0036839
  • Shen, M., Huang, X., & Gao, Z. (2015). Object-based attention underlies the rehearsal of feature binding in visual working memory. Journal of Experimental Psychology. Human Perception and Performance, 41(2), 479–493. https://doi.org/10.1037/xhp0000018
  • Towse, J. N., Hitch, G. J., & Hutton, U. (1998). A reevaluation of working memory capacity in children. Journal of Memory and Language, 39(2), 195–217. https://doi.org/10.1006/jmla.1998.2574
  • Towse, J. N., Hitch, G. J., & Hutton, U. (2000). On the interpretation of working memory span in adults. Memory & Cognition, 28(3), 341–348. https://doi.org/10.3758/bf03198549
  • Tractica. (2018). Gesture control interfaces – Mobile devices, gaming, smart buildings and smart appliances, automotive, healthcare, augmented and virtual reality, sign language and computing: Global market analysis and forecasts. Tractica.
  • van Beurden, M., Ijsselsteijn, W., & De Kort, Y. (2012). User experience of gesture based interfaces: A comparison with traditional interaction methods on pragmatic and hedonic qualities [Paper presentation]. Paper presented at the GW. Gesture and Sign Language in Human-Computer Interaction and Embodied Communication, 2011.
  • van den Berg, R., Awh, E., & Ma, W. J. (2014). Factorial comparison of working memory models. Psychological Review, 121(1), 124–149. https://doi.org/10.1037/a0035234
  • Vatavu, R.-D., & Zaiti, I.-A. (2014). Leap gestures for TV: Insights from an elicitation study [Paper presentation]. Paper presented at the Proceedings of the ACM International Conference on Interactive Experiences for TV and Online Video, Newcastle Upon Tyne, United Kingdom. https://doi.org/10.1145/2602299.2602316
  • Vogiatzidakis, P., & Koutsabasis, P. (2018). Gesture elicitation studies for mid-air interaction: A review. Multimodal Technologies and Interaction, 2(4), 65. https://doi.org/10.3390/mti2040065
  • Vuletic, T., Duffy, A., Hay, L., McTeague, C., Campbell, G., & Grealy, M. (2019). Systematic literature review of hand gestures used in human computer interaction interfaces. International Journal of Human-Computer Studies, 129, 74–94. https://doi.org/10.1016/j.ijhcs.2019.03.011
  • Wagner, S. M., Nusbaum, H., & Goldin-Meadow, S. (2004). Probing the mental representation of gesture: Is handwaving spatial? Journal of Memory and Language, 50(4), 395–407. https://doi.org/10.1016/j.jml.2004.01.002
  • Wilson, M., & Emmorey, K. (2006). Comparing sign language and speech reveals a universal limit on short-term memory capacity. Psychological Science, 17(8), 682–683. https://doi.org/10.1111/j.1467-9280.2006.01766.x
  • Wingfield, A., Stine, E. A. L., Lahar, C. J., & Aberdeen, J. S. (1988). Does the capacity of working memory change with age? Experimental Aging Research, 14(2–3), 103–107. https://doi.org/10.1080/03610738808259731
  • Wobbrock, J. O., Morris, M. R., & Wilson, A. D. (2009). User-defined gestures for surface computing. In Chi2009: Proceedings of the 27th Annual CHI Conference on Human Factors in Computing Systems, (Vols 1–4, pp. 1083–1092). ACM.
  • Wood, J. N. (2007). Visual working memory for observed actions. Journal of Experimental Psychology. General, 136(4), 639–652. https://doi.org/10.1037/0096-3445.136.4.639
  • Wu, H., Wang, J. (2012). User-defined body gestures for TV-based applications [Paper presentation]. Paper presented at the 2012 Fourth International Conference on Digital Home (pp. 415–420). https://doi.org/10.1109/icdh.2012.23
  • Wu, H., Gai, J., Wang, Y., Liu, J., Qiu, J., Wang, J., & Zhang, X. (2020). Influence of cultural factors on freehand gesture design. International Journal of Human-Computer Studies, 143, 102502. https://doi.org/10.1016/j.ijhcs.2020.102502
  • Zhao, M.-F., Zimmer, H. D., Zhou, X., & Fu, X. (2016). Enactment supports unitisation of action components and enhances the contribution of familiarity to associative recognition. Journal of Cognitive Psychology, 28(8), 932–947. https://doi.org/10.1080/20445911.2016.1229321

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.