310
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

RoamFab: A Design Tool for Reconfiguring Parameterized Mechanisms to 3D Models With Structural Optimization

, , , , , , & show all
Pages 3702-3716 | Received 05 Mar 2022, Accepted 20 Jun 2022, Published online: 26 Aug 2022

References

  • Alvarez, C., K. L., Lagos, C. R. F., & Aizpun, M. (2016). Investigating the influence of infill percentage on the mechanical properties of fused deposition modelled ABS parts. Ingeniería e Investigación, 36(3), 110–116. https://doi.org/10.15446/ing.investig.v36n3.56610
  • Andheum. (2022, January). Human UI. https://www.food4rhino.com/en/app/human-ui
  • ASTM International. (2015). ASTM D638-14, standard test method for tensile properties of plastics. ASTM International.
  • Bächer, M., Bickel, B., James, D. L., & Pfister, H. (2012). Fabricating articulated characters from skinned meshes. ACM Transactions on Graphics, 31(4), 1–9. https://doi.org/10.1145/2185520.2185543
  • Berman, A., Quek, F., Woodward, R., Okundaye, O., & Kim, J. (2020). “anyone can print”: Supporting collaborations with 3d printing services to empower broader participation in personal fabrication. In Proceedings of the 11th Nordic Conference on Human-Computer Interaction: Shaping Experiences, Shaping Society (pp. 1–13). Association for Computing Machinery. https://doi.org/10.1145/3419249.3420068
  • Budynas, R. G., & Nisbett, J. K. (2011). Shigley’s mechanical engineering design (Vol. 9). McGraw-Hill New York.
  • Calì, J., Calian, D. A., Amati, C., Kleinberger, R., Steed, A., Kautz, J., & Weyrich, T. (2012). 3d-printing of non-assembly, articulated models. ACM Transactions on Graphics, 31(6), 1–8. https://doi.org/10.1145/2366145.2366149
  • Chen, D., Levin, D. I., Sueda, S., & Matusik, W. (2015). Data-driven finite elements for geometry and material design. ACM Transactions on Graphics (TOG), 34(4), 1–10.
  • Chen, X., Kim, J., Mankoff, J., Grossman, T., Coros, S., & Hudson, S. E. (2016). Reprise: A design tool for specifying, generating, and customizing 3d printable adaptations on everyday objects. In Proceedings of the 29th Annual Symposium on User Interface Software and Technology (pp. 29–39). Association for Computing Machinery.
  • Cura, U. (2022, January). Ultimaker cura. https://ultimaker.com/software/ultimaker-cura
  • Es-Said, O., Foyos, J., Noorani, R., Mendelson, M., Marloth, R., & Pregger, B. (2000). Effect of layer orientation on mechanical properties of rapid prototyped samples. Materials and Manufacturing Processes, 15(1), 107–122. https://doi.org/10.1080/10426910008912976
  • Guo, A., Kim, J., Chen, X., Yeh, T., Hudson, S. E., Mankoff, J., & Bigham, J. P. (2017). Facade: Auto-generating tactile interfaces to appliances. In Proceedings of the 2017 Chi Conference on Human Factors in Computing Systems (pp. 5826–5838). Association for Computing Machinery.
  • He, L., Peng, H., Lin, M., Konjeti, R., Guimbretière, F., & Froehlich, J. E. (2019). Ondulé: Designing and controlling 3d printable springs. In Proceedings of the 32nd Annual Acm Symposium on User Interface Software and Technology (pp. 739–750). Association for Computing Machinery.
  • Hildebrand, K., Bickel, B., & Alexa, M. (2013). Orthogonal slicing for additive manufacturing. Computers & Graphics, 37(6), 669–675. https://doi.org/10.1016/j.cag.2013.05.011
  • Huang, Y.-J., Chan, S.-Y., Lin, W.-C., & Chuang, S.-Y. (2016). Making and animating transformable 3d models. Computers & Graphics, 54, 127–134. https://doi.org/10.1016/j.cag.2015.07.014
  • Hudson, N., Alcock, C., & Chilana, P. K. (2016). Understanding newcomers to 3d printing: Motivations, workflows, and barriers of casual makers. In Proceedings of the 2016 Chi Conference on Human Factors in Computing Systems (pp. 384–396). Association for Computing Machinery.
  • Ion, A., Wall, L., Kovacs, R., & Baudisch, P. (2017). Digital mechanical metamaterials. In Proceedings of the 2017 Chi Conference on Human Factors in Computing Systems (pp. 977–988).
  • Khan, S., Zakaria, H., Chong, Y., Saad, M., & Basaruddin, K. (2018). Effect of infill on tensile and flexural strength of 3D printed PLA parts. In IOP Conference Series: Materials Science and Engineering (Vol. 429, p. 012101). IOP Publishing. https://doi.org/10.1088/1757-899X/429/1/012101
  • Koo, B., Li, W., Yao, J., Agrawala, M., & Mitra, N. J. (2014). Creating works-like prototypes of mechanical objects. ACM Transactions on Graphics, 33(6), 1–9. https://doi.org/10.1145/2661229.2661289
  • Koyama, Y., Sueda, S., Steinhardt, E., Igarashi, T., Shamir, A., & Matusik, W. (2015). Autoconnect: computational design of 3D-printable connectors. ACM Transactions on Graphics, 34(6), 1–11. https://doi.org/10.1145/2816795.2818060
  • Ledo, D., Houben, S., Vermeulen, J., Marquardt, N., Oehlberg, L., & Greenberg, S. (2018). Evaluation strategies for HCI toolkit research. In Proceedings of the 2018 Chi Conference on Human Factors in Computing Systems (pp. 1–17). Association for Computing Machinery.
  • Li, J., Cui, M., Kim, J., & Chen, X. (2020). Romeo: A design tool for embedding transformable parts in 3d models to robotically augment default functionalities. In Proceedings of the 33rd Annual Acm Symposium on User Interface Software and Technology (pp. 897–911). Association for Computing Machinery.
  • Li, J., Kim, J., & Chen, X. (2019). Robiot: A design tool for actuating everyday objects with automatically generated 3d printable mechanisms. In Proceedings of the 32nd Annual Acm Symposium on User Interface Software and Technology (pp. 673–685). Association for Computing Machinery. https://doi.org/10.1145/3332165.3347894
  • Liu, J., Gaynor, A. T., Chen, S., Kang, Z., Suresh, K., Takezawa, A., Li, L., Kato, J., Tang, J., Wang, C. C. L., Cheng, L., Liang, X., & To, A. C. (2018). Current and future trends in topology optimization for additive manufacturing. Structural and Multidisciplinary Optimization, 57(6), 2457–2483. https://doi.org/10.1007/s00158-018-1994-3
  • Lu, L., Sharf, A., Zhao, H., Wei, Y., Fan, Q., Chen, X., Savoye, Y., Tu, C., Cohen-Or, D., & Chen, B. (2014). Build-to-last: Strength to weight 3d printed objects. ACM Transactions on Graphics, 33(4), 1–10. https://doi.org/10.1145/2601097.2601168
  • McNeel, R. (2010). Rhinoceros 3D, version 7.0. Robert McNeel & Associates.
  • Megaro, V., Thomaszewski, B., Nitti, M., Hilliges, O., Gross, M., & Coros, S. (2015). Interactive design of 3D-printable robotic creatures. ACM Transactions on Graphics, 34(6), 1–9. https://doi.org/10.1145/2816795.2818137
  • Megaro, V., Zehnder, J., Bächer, M., Coros, S., Gross, M. H., & Thomaszewski, B. (2017). A computational design tool for compliant mechanisms. ACM Transactions on Graphics, 36(4), 1–1. https://doi.org/10.1145/3072959.3073636
  • Noma, Y., Narumi, K., Okuya, F., & Kawahara, Y. (2020). Pop-up print: Rapidly 3d printing mechanically reversible objects in the folded state. In Proceedings of the 33rd Annual Acm Symposium on User Interface Software and Technology (pp. 58–70). Association for Computing Machinery.
  • Norman, D. (2013). The design of everyday things: Revised and expanded edition. Basic Books.
  • O’Connell, J. (2022, January). 3d printing infill: The basics - simply explained. https://all3dp.com/2/infill-3d-printing-what-it-means-and-how-to-use-it/
  • Pinterest. (2022, January). An Image Sharing and Social Media Service. https://www.pinterest.com/
  • Prusaprinters. (2022, January). Community Site for 3D Printer Users. https://www.prusaprinters.org/prints
  • PrusaSlicer. (2022, January). Infill types and their properties. https://help.prusa3d.com/
  • Ramakers, R., Anderson, F., Grossman, T., & Fitzmaurice, G. (2016). Retrofab: A design tool for retrofitting physical interfaces using actuators, sensors and 3D printing. In Proceedings of the 2016 Chi Conference on Human Factors in Computing Systems (pp. 409–419). Association for Computing Machinery.
  • Rhinoceros. (2022, January). Rhinoceros grasshopper. https://www.rhino3d.com/6/new/grasshopper/
  • Roumen, T. J., Müller, W., & Baudisch, P. (2018). Grafter: Remixing 3d-printed machines. In Proceedings of the 2018 Chi Conference on Human Factors in Computing Systems (pp. 1–12). Association for Computing Machinery.
  • Stava, O., Vanek, J., Benes, B., Carr, N., & Měch, R. (2012). Stress relief: Improving structural strength of 3D printable objects. ACM Transactions on Graphics, 31(4), 1–11. https://doi.org/10.1145/2185520.2185544
  • Sun, L., Yang, Y., Chen, Y., Li, J., Luo, D., Liu, H., Yao, L., Tao, Y., & Wang, G. (2021). Shrincage: 4D printing accessories that self-adapt. In Proceedings of the 2021 Chi Conference on Human Factors in Computing Systems (pp. 1–12). Association for Computing Machinery. https://doi.org/10.1145/3411764.3445220
  • Thingiverse. (2022, January). Digital Designs for Physical Objects. https://www.thingiverse.com/
  • Umetani, N., & Schmidt, R. M. (2013). Cross-sectional structural analysis for 3d printing optimization. In Siggraph Asia Technical Briefs (pp. 5–1). Association for Computing Machinery. https://doi.org/10.1145/2542355.2542361
  • Ureta, F. G., Tymms, C., & Zorin, D. (2016). Interactive modeling of mechanical objects. Computer Graphics Forum, 35(5), 145–155. https://doi.org/10.1111/cgf.12971
  • Xie, Y., Xu, W., Yang, Y., Guo, X., & Zhou, K. (2015). Agile structural analysis for fabrication-aware shape editing. Computer Aided Geometric Design, 35, 163–179.
  • Xu, H., Li, Y., Chen, Y., & Barbič, J. (2015). Interactive material design using model reduction. ACM Transactions on Graphics (TOG), 34(2), 1–14.
  • Yu, C., Crane, K., & Coros, S. (2017). Computational design of telescoping structures. ACM Transactions on Graphics, 36(4), 1–9. https://doi.org/10.1145/3072959.3073673
  • Yuan, Y., Zheng, C., & Coros, S. (2018). Computational design of transformables. Computer Graphics Forum, 37(8), 103–113. https://doi.org/10.1111/cgf.13516
  • Zhang, R., Auzinger, T., & Bickel, B. (2021). Computational design of planar multistable compliant structures. ACM Transactions on Graphics (TOG), 40(5), 1–16.
  • Zhang, R., Auzinger, T., Ceylan, D., Li, W., & Bickel, B. (2017). Functionality-aware retargeting of mechanisms to 3D shapes. ACM Transactions on Graphics (TOG), 36(4), 1–13.
  • Zhang, X., Le, X., Wu, Z., Whiting, E., & Wang, C. C. (2016). Data-driven bending elasticity design by shell thickness. Computer Graphics Forum, 35(5), 157–166. https://doi.org/10.1111/cgf.12972
  • Zhou, Y., Kalogerakis, E., Wang, R., & Grosse, I. R. (2016). Direct shape optimization for strengthening 3D printable objects. Computer Graphics Forum, 35(7), 333–342. https://doi.org/10.1111/cgf.13030

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.