378
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Applying Functional Animation to Pictorial Symbols for Supporting P300–Brain–Computer Interface Access to Augmentative and Alternative Communication Devices by Children

ORCID Icon, ORCID Icon & ORCID Icon
Pages 667-679 | Received 11 Apr 2022, Accepted 31 Aug 2022, Published online: 13 Sep 2022

References

  • Belitski, A., Farquhar, J., & Desain, P. (2011). P300 audio-visual speller. Journal of Neural Engineering, 8(2), 025022. https://doi.org/10.1088/1741-2560/8/2/025022
  • Beukelman, D., & Light, J. (2020). Augmentative and alternative communication: Supporting children and adults with complex communication needs. (5th ed.). Paul H. Brookes Publishing Co.
  • Beveridge, R., Wilson, S., Callaghan, M., & Coyle, D. (2019). Neurogaming with motion-onset visual evoked potentials (mVEPs): Adults versus teenagers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 572–581. https://doi.org/10.1109/TNSRE.2019.2904260
  • Beveridge, R., Wilson, S., & Coyle, D. (2017). Can teenagers control a 3D racing game using motion-onset visual evoked potentials? Brain-Computer Interfaces, 4(1–2), 102–113. https://doi.org/10.1080/2326263X.2016.1266725
  • Bianchi, L., Sami, S., Hillebrand, A., Fawcett, I. P., Quitadamo, L. R., & Seri, S. (2010). Which physiological components are more suitable for visual ERP based brain–computer interface? A preliminary MEG/EEG study. Brain Topography, 23(2), 180–185. https://doi.org/10.1007/s10548-010-0143-0
  • Boster, J. B., McCarthy, J. W., Brown, K., Spitzley, A. M., & Blackstone, S. W. (2021). Creating a path for systematic investigation of children with cortical visual impairment who use augmentative and alternative communication. American Journal of Speech-Language Pathology, 30(4), 1880–1893. https://doi.org/10.1044/2021_AJSLP-20-00203
  • Botelho, F. (2021). Childhood and assistive technology: Growing with opportunity, developing with technology. Assistive Technology, 33(sup1), 87–93. https://doi.org/10.1080/10400435.2021.1971330
  • Brumberg, J. S., Pitt, K. M., Mantie-Kozlowski, A., & Burnison, J. D. (2018). Brain-computer interfaces for augmentative and alternative communication: A tutorial. American Journal of Speech-Language Pathology, 27(1), 1–12. https://doi.org/10.1044/2017_AJSLP-16-0244
  • Cheng, J., Jin, J., Daly, I., Zhang, Y., Wang, B., Wang, X., & Cichocki, A. (2019). Effect of a combination of flip and zooming stimuli on the performance of a visual brain-computer interface for spelling. Biomedical Engineering/Biomedizinische Technik, 64(1), 29–38. https://doi.org/10.1515/bmt-2017-0082
  • Delon-Martin, C., Gobbelé, R., Buchner, H., Haug, B. A., Antal, A., Darvas, F., & Paulus, W. (2006). Temporal pattern of source activities evoked by different types of motion onset stimuli. NeuroImage, 31(4), 1567–1579. https://doi.org/10.1016/j.neuroimage.2006.02.013
  • Dijkstra, K. V., Farquhar, J. D. R., & Desain, P. W. M. (2020). The N400 for brain computer interfacing: Complexities and opportunities. Journal of Neural Engineering, 17(2), 022001. https://doi.org/10.1088/1741-2552/ab702e
  • Donchin, E. (1981). Presidential address, 1980. Surprise!…Surprise? Psychophysiology, 18(5), 493–513. https://doi.org/10.1111/j.1469-8986.1981.tb01815.x
  • Donchin, E., Spencer, K. M., & Wijesinghe, R. (2000). The mental prosthesis: Assessing the speed of a P300-based brain-computer interface. IEEE Transactions on Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 8(2), 174–179. https://doi.org/10.1109/86.847808
  • Duncan, C. C., Barry, R. J., Connolly, J. F., Fischer, C., Michie, P. T., Näätänen, R., Polich, J., Reinvang, I., & Van Petten, C. (2009). Event-related potentials in clinical research: Guidelines for eliciting, recording, and quantifying mismatch negativity, P300, and N400. Clinical Neurophysiology, 120(11), 1883–1908. https://doi.org/10.1016/j.clinph.2009.07.045
  • Frick, B., Boster, J. B., & Thompson, S. (2022). Animation in AAC: Previous research, a sample of current availability in the United States, and future research potential. Assistive Technology, 1–10. https://doi.org/10.1080/10400435.2022.2043954
  • Friedman, D., Kazmerski, V., & Fabiani, M. (1997). An overview of age-related changes in the scalp distribution of P3b. Electroencephalography and Clinical Neurophysiology/Evoked Potentials Section, 104(6), 498–513. https://doi.org/10.1016/S0168-5597(97)00036-1
  • Geuze, J., Farquhar, J. D., & Desain, P. (2012). Dense codes at high speeds: Varying stimulus properties to improve visual speller performance. Journal of Neural Engineering, 9(1), 016009. https://doi.org/10.1088/1741-2560/9/1/016009
  • Guo, F., Hong, B., Gao, X., & Gao, S. (2008). A brain-computer interface using motion-onset visual evoked potential. Journal of Neural Engineering, 5(4), 477–485. https://doi.org/10.1088/1741-2560/5/4/011
  • Hill, H., Strube, M., Roesch-Ely, D., & Weisbrod, M. (2002). Automatic vs. controlled processes in semantic priming—differentiation by event-related potentials. International Journal of Psychophysiology, 44(3), 197–218. https://doi.org/10.1016/S0167-8760(01)00202-1
  • Hong, B., Guo, F., Liu, T., Gao, X., & Gao, S. (2009). N200-speller using motion-onset visual response. Clinical Neurophysiology, 120(9), 1658–1666. https://doi.org/10.1016/j.clinph.2009.06.026
  • Jagaroo, V., & Wilkinson, K. (2008). Further considerations of visual cognitive neuroscience in aided AAC: The potential role of motion perception systems in maximizing design display. Augmentative and Alternative Communication, 24(1), 29–42. https://doi.org/10.1080/07434610701390673
  • Jin, J., Allison, B. Z., Kaufmann, T., Kübler, A., Zhang, Y., Wang, X., & Cichocki, A. (2012a). The changing face of P300 BCIs: A comparison of stimulus changes in a P300 BCI involving faces, emotion, and movement. PLOS One, 7(11), e49688. https://doi.org/10.1371/journal.pone.0049688
  • Jin, J., Allison, B. Z., Wang, X., & Neuper, C. (2012b). A combined brain-computer interface based on P300 potentials and motion-onset visual evoked potentials. Journal of Neuroscience Methods, 205(2), 265–276. https://doi.org/10.1016/j.jneumeth.2012.01.004
  • Jones, M. R., & Sellers, E. W. (2019). Faces, locations, and tools: A proposed two-stimulus P300 brain computer interface. Journal of Neural Engineering, 16(3), 036026. https://doi.org/10.1088/1741-2552/aaff22
  • Jung, T. P., Makeig, S., Westerfield, M., Townsend, J., Courchesne, E., & Sejnowski, T. J. (2000). Removal of eye activity artifacts from visual event-related potentials in normal and clinical subjects. Clinical Neurophysiology, 111(10), 1745–1758. https://doi.org/10.1016/S1388-2457(00)00386-2
  • Kaufmann, T., Schulz, S. M., Köblitz, A., Renner, G., Wessig, C., & Kübler, A. (2013). Face stimuli effectively prevent brain–computer interface inefficiency in patients with neurodegenerative disease. Clinical Neurophysiology, 124(5), 893–900. https://doi.org/10.1016/j.clinph.2012.11.006
  • Kellicut-Jones, M. R., & Sellers, E. W. (2018). P300 brain-computer interface: Comparing faces to size matched non-face stimuli. Brain-Computer Interfaces, 5(1), 30–39. https://doi.org/10.1080/2326263X.2018.1433776
  • Kelly, D., Zewdie, E., Kirton, A. (2019). Pediatric brain-computer interface competency: A pilot study. In G. Müller-Putz, J. C. Ditz, & S. C. Wriessnegger (Eds.), Proceedings of the 8th Graz brain-computer interface conference 2019. https://doi.org/10.3217/978-3-85125-682-6-28
  • Kinney-Lang, E., Kelly, D., Floreani, E. D., Jadavji, Z., Rowley, D., Zewdie, E. T., … Kirton, A. (2020). Advancing brain-computer interface applications for severely disabled children through a multidisciplinary national network: Summary of the inaugural pediatric BCI Canada Meeting. Frontiers in Human Neuroscience, 530, 1–11. https://doi.org/10.3389/fnhum.2020.593883
  • Kuba, M., Kremláček, J., Langrová, J., Kubová, Z., Szanyi, J., & Vít, F. (2012). Aging effect in pattern, motion and cognitive visual evoked potentials. Vision Research, 62, 9–16. https://doi.org/10.1016/j.visres.2012.03.014
  • Kuba, M., Kubová, Z., Kremláček, J., & Langrová, J. (2007). Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Research, 47(2), 189–202. https://doi.org/10.1016/j.visres.2006.09.020
  • Kutas, M., & Federmeier, K. D. (2011). Thirty years and counting: Finding meaning in the N400 component of the event-related brain potential (ERP). Annual Review of Psychology, 62, 621–647. https://doi.org/10.1146/annurev.psych.093008.131123
  • Kutas, M., & Hillyard, S. A. (1980). Event-related brain potentials to semantically inappropriate and surprisingly large words. Biological Psychology, 11(2), 99–116. https://doi.org/10.1016/0301-0511(80)90046-0
  • Liao, K., McCandliss, B. D., Carlson, S. E., Colombo, J., Shaddy, D. J., Kerling, E. H., Lepping, R. J., Sittiprapaporn, W., Cheatham, C. L., & Gustafson, K. M. (2017). Event-related potential differences in children supplemented with long-chain polyunsaturated fatty acids during infancy. Developmental Science, 20(5), e12455. https://doi.org/10.1111/desc.12455
  • Light, J., McNaughton, D., & Caron, J. (2019). New and emerging AAC technology supports for children with complex communication needs and their communication partners: State of the science and future research directions. Augmentative and Alternative Communication, 35(1), 26–41. https://doi.org/10.1080/07434618.2018.1557251
  • Li, Y., Bahn, S., Nam, C. S., & Lee, J. (2014). Effects of luminosity contrast and stimulus duration on user performance and preference in a P300-based brain–computer interface. International Journal of Human-Computer Interaction, 30(2), 151–163. https://doi.org/10.1080/10447318.2013.839903
  • Li, Y., Nam, C. S., Shadden, B. B., & Johnson, S. L. (2010). A P300-based brain–computer interface: Effects of interface type and screen size. International Journal of Human-Computer Interaction, 27(1), 52–68. https://doi.org/10.1080/10447318.2011.535753
  • Liu, T., Goldberg, L., Gao, S., & Hong, B. (2010). An online brain-computer interface using non-flashing visual evoked potentials. Journal of Neural Engineering, 7(3), 036003. https://doi.org/10.1088/1741-2560/7/3/036003
  • Luck, S. J. (2014). An introduction to the event-related potential technique. (2nd ed.). The MIT Press.
  • Martens, S. M., Hill, N. J., Farquhar, J. D., & Schölkopf, B. (2009). Overlap and refractory effects in a brain-computer interface speller based on the visual P300 event-related potential. Journal of Neural Engineering, 6(2), 026003. https://doi.org/10.1088/1741-2560/6/2/026003
  • McCane, L. M., Heckman, S. M., McFarland, D. J., Townsend, G., Mak, J. N., Sellers, E. W., Zeitlin, D., Tenteromano, L. M., Wolpaw, J. R., & Vaughan, T. M. (2015). P300-based brain-computer interface (BCI) event-related potentials (ERPs): People with amyotrophic lateral sclerosis (ALS) vs. age-matched controls. Clinical Neurophysiology, 126(11), 2124–2131. https://doi.org/10.1016/j.clinph.2015.01.013
  • McCarthy, J. W., & Boster, J. B. (2018). A comparison of the performance of 2.5 to 3.5-year-old children without disabilities using animated and cursor-based scanning in a contextual scene. Assistive Technology, 30(4), 183–190. https://doi.org/10.1080/10400435.2017.1307883
  • McCarthy, J. W., Light, J. C., Drager, K. D., McNaughton, D., Grodzicki, L., Jones, J. S., Panek, E., & Parkin, E. (2006). Re-designing scanning to reduce learning demands: The performance of typically developing 2-year-olds. Augmentative and Alternative Communication, 22(4), 269–283. https://doi.org/10.1080/00498250600718621
  • Mehta, J., Jerger, S., Jerger, J., & Martin, J. (2009). Electrophysiological correlates of word comprehension: Event-related potential (ERP) and independent component analysis (ICA). International Journal of Audiology, 48(1), 1–11. https://doi.org/10.1080/14992020802527258
  • Mellor, D., & Moore, K. A. (2014). The use of Likert scales with children. Journal of Pediatric Psychology, 39(3), 369–379. https://doi.org/10.1093/jpepsy/jst079
  • Moghimi, S., Kushki, A., Marie Guerguerian, A., & Chau, T. (2013). A review of EEG-based brain-computer interfaces as access pathways for individuals with severe disabilities. Assistive Technology, 25(2), 99–110. https://doi.org/10.1080/10400435.2012.723298
  • Orlandi, S., House, S. C., Karlsson, P., Saab, R., & Chau, T. (2021). Brain-computer interfaces for children with complex communication needs and limited mobility: A systematic review. Frontiers in Human Neuroscience, 15, 643294. https://doi.org/10.3389/fnhum.2021.643294
  • Peirce, J. W. (2007). PsychoPy—Psychophysics software in Python. Journal of Neuroscience Methods, 162(1–2), 8–13. https://doi.org/10.1016/j.jneumeth.2006.11.017
  • Pitt, K. M., Mansouri, A., Wang, Y., & Zosky, J. (2022). Toward P300 brain-computer interface access to contextual scene displays for AAC: An initial exploration of context and asymmetry processing in healthy adults. Neuropsychologia, 108289.
  • Pitt, K. M., & Brumberg, J. S. (2018a). Guidelines for feature matching assessment of brain-computer interfaces for augmentative and alternative communication. American Journal of Speech-Language Pathology, 27(3), 950–964. https://doi.org/10.1044/2018_AJSLP-17-0135
  • Pitt, K., & Brumberg, J. (2018b). A screening protocol incorporating brain-computer interface feature matching considerations for augmentative and alternative communication. Assistive Technology, 32(3), 161–172. https://doi.org/10.1080/10400435.2018.1512175
  • Pitt, K. M., & Brumberg, J. S. (2021). Evaluating the perspectives of those with severe physical impairments while learning BCI control of a commercial augmentative and alternative communication paradigm. Assistive Technology, 1–9. https://doi.org/10.1080/10400435.2021.1949405
  • Pitt, K. M., Brumberg, J. S., Burnison, J. D., Mehta, J., & Kidwai, J. (2019a). Behind the scenes of noninvasive brain-computer interfaces: A review of electroencephalography signals, how they are recorded, and why they matter. Perspectives of the ASHA Special Interest Groups, 4(6), 1622–1636. https://doi.org/10.1044/2019_pers-19-00059
  • Pitt, K. M., Brumberg, J. S., & Pitt, A. R. (2019b). Considering augmentative and alternative communication research for brain-computer interface practice. Assistive Technology Outcomes and Benefits, 13(1), 1–20. https://www.atia.org/wp-content/uploads/2019/10/ATOB-V13-FINAL_Pitt.pdf
  • Pitt, K. M., & Dietz, A. (2022). Applying implementation science to support active collaboration in noninvasive brain-computer interface development and translation for augmentative and alternative communication. American Journal of Speech-Language Pathology, 31(1), 515–526. https://doi.org/10.1044/2021_AJSLP-21-00152
  • Pitt, K., McKelvey, M., & Weissling, K. (2022a). The perspectives of augmentative and alternative communication experts on the clinical integration of non-invasive brain-computer interfaces. Brain-Computer Interfaces, 1–18. https://doi.org/10.1080/2326263X.2022.2057758
  • Polich, J. (2007). Updating P300: An integrative theory of P3a and P3b. Clinical Neurophysiology, 118(10), 2128–2148. https://doi.org/10.1016/j.clinph.2007.04.019
  • Rossion, B., Curran, T., & Gauthier, I. (2002). A defense of the subordinate-level expertise account for the N170 component. Cognition, 85(2), 189–196. https://doi.org/10.1016/S0010-0277(02)00101-4
  • Sangal, R. B., & Sangal, J. M. (1996). Topography of auditory and visual P300 in normal children. Clinical EEG, 27(1), 46–51. https://doi.org/10.1177/155005949602700108
  • Schaeff, S., Treder, M. S., Venthur, B., & Blankertz, B. (2012). Exploring motion VEPs for gaze-independent communication. Journal of Neural Engineering, 9(4), 045006. https://doi.org/10.1088/1741-2560/9/4/045006
  • Schlosser, R. W., Brock, K. L., Koul, R., Shane, H., & Flynn, S. (2019). Does animation facilitate understanding of graphic symbols representing verbs in children with autism spectrum disorder? Journal of Speech, Language, and Hearing Research, 62(4), 965–978. https://doi.org/10.1044/2018_JSLHR-L-18-0243
  • Schlosser, R. W., Shane, H., Sorce, J., Koul, R., Bloomfield, E., Debrowski, L., DeLuca, T., Miller, S., Schneider, D., & Neff, A. (2012). Animation of graphic symbols representing verbs and prepositions: Effects on transparency, name agreement, and identification. Journal of Speech, Language, and Hearing Research, 55(2), 342–358. https://doi.org/10.1044/1092-4388(2011/10-0164)
  • Sellers, E. W., Krusienski, D. J., McFarland, D. J., Vaughan, T. M., & Wolpaw, J. R. (2006). A P300 event-related potential brain–computer interface (BCI): The effects of matrix size and inter stimulus interval on performance. Biological Psychology, 73(3), 242–252. https://doi.org/10.1016/j.biopsycho.2006.04.007
  • Snowden, R. J., & Freeman, T. C. (2004). The visual perception of motion. Current Biology, 14(19), R828–R831. https://doi.org/10.1016/j.cub.2004.09.033
  • Sugata, H., Hirata, M., Kageyama, Y., Kishima, H., Sawada, J., & Yoshimine, T. (2016). Relationship between the spatial pattern of P300 and performance of a P300-based brain-computer interface in amyotrophic lateral sclerosis. Brain-Computer Interfaces, 3(1), 1–8. https://doi.org/10.1080/2326263X.2015.1132080
  • Townsend, G., LaPallo, B. K., Boulay, C. B., Krusienski, D. J., Frye, G. E., Hauser, C. K., Schwartz, N. E., Vaughan, T. M., Wolpaw, J. R., & Sellers, E. W. (2010). A novel P300-based brain-computer interface stimulus presentation paradigm: Moving beyond rows and columns. Clinical Neurophysiology, 121(7), 1109–1120. https://doi.org/10.1016/j.clinph.2010.01.030
  • van Dinteren, R., Arns, M., Jongsma, M. L., & Kessels, R. P. (2014). P300 development across the lifespan: A systematic review and meta-analysis. PLOS One, 9(2), e87347. https://doi.org/10.1371/journal.pone.0087347
  • Vivian, L., Kearns, J., & McCarthy, J. (2012). The effects of animated feedback on locating verbs in a dynamic contextual scene display on an augmentative and alternative communication device. Contemporary Issues in Communication Science and Disorders, 39(Spring), 43–53. https://doi.org/10.1044/cicsd_39_S_43
  • Wilkinson, K. M., & Wolf, S. J. (2021). An in-depth case description of gaze patterns of an individual with cortical visual impairment to stimuli of varying complexity: Implications for augmentative and alternative communication design. Perspectives of the ASHA Special Interest Groups, 6(6), 1591–1602. https://doi.org/10.1044/2021_PERSP-21-00111
  • Won, D. O., Hwang, H. J., Kim, D. M., Muller, K. R., & Lee, S. W. (2018). Motion-based rapid serial visual presentation for gaze-independent brain-computer interfaces. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 26(2), 334–343. https://doi.org/10.1109/TNSRE.2017.2736600

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.