419
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

The Moderating Effects of Task Complexity and Age on the Relationship between Automation Use and Cognitive Workload

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Pages 1746-1764 | Received 20 Jun 2022, Accepted 22 Nov 2022, Published online: 19 Dec 2022

References

  • Alvarez, G. A., & Cavanagh, P. (2004). The capacity of visual short-term memory is set both by visual information load and by number of objects. Psychological Science, 15(2), 106–111. https://doi.org/10.1111/j.0963-7214.2004.01502006.x
  • Bambha, V. P., & Casasola, M. (2021). From lab to zoom: Adapting training study methodologies to remote conditions. Frontiers in Psychology, 12, 694728–694728. https://doi.org/10.3389/fpsyg.2021.694728
  • Berkman, M. I., & Karahoca, D. (2016). Re-assessing the usability metric for user experience (UMUX) scale. Journal of Usability Studies, 11(3), 89–109.
  • Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability Evaluation in Industry, 189(194), 4–7.
  • Brookhuis, K. A., van Driel, C. J. G., Hof, T., van Arem, B., & Hoedemaeker, M. (2009). Driving with a congestion assistant; mental workload and acceptance. Applied Ergonomics, 40(6), 1019–1025. https://doi.org/10.1016/j.apergo.2008.06.010
  • Brünken, R., Plass, J. L., & Leutner, D. (2003). Direct measurement of cognitive load in multimedia learning. Educational Psychologist, 38(1), 53–61. https://doi.org/10.1207/S15326985EP3801_7
  • Calvo-Porral, C., & Pesqueira-Sanchez, R. (2020). Generational differences in technology behaviour: Comparing millennials and Generation X. Kybernetes, 49(11), 2755–2772. https://doi.org/10.1108/K-09-2019-0598
  • Charles, R. L., & Nixon, J. (2019). Measuring mental workload using physiological measures: A systematic review. Applied Ergonomics, 74(May), 221–232. https://doi.org/10.1016/j.apergo.2018.08.028
  • Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51(1), 42–100. https://doi.org/10.1016/j.cogpsych.2004.12.001
  • De Visser, E., & Parasuraman, R. (2011). Adaptive aiding of human-robot teaming: Effects of imperfect automation. On Performance, Trust, and Workload. Journal of Cognitive Engineering and Decision Making, 5(2), 209–231. https://doi.org/10.1177/1555343411410160
  • Deaton, J. E., & Parasuraman, R. (1993). Sensory and cognitive vigilance: Effects of age on performance and subjective workload. Human Performance, 6(1), 71–97. https://doi.org/10.1207/s15327043hup0601_4
  • Dzindolet, M. T., Pierce, L. G., Beck, H. P., & Dawe, L. A. (2002). The perceived utility of human and automated aids in a visual detection task. Human Factors, 44(1), 79–94. https://doi.org/10.1518/0018720024494856
  • Endsley, M. R., & Kaber, D. B. (1999). Level of automation effects on performance, situation awareness and workload in a dynamic control task. Ergonomics, 42(3), 462–492. https://doi.org/10.1080/001401399185595
  • Evans, D. C., & Fendley, M. (2017). A multi-measure approach for connecting cognitive workload and automation. International Journal of Human-Computer Studies, 97(January), 182–189. https://doi.org/10.1016/j.ijhcs.2016.05.008
  • Finstad, K. (2010). The usability metric for user experience. Interacting with Computers, 22(5), 323–327. https://doi.org/10.1016/j.intcom.2010.04.004
  • Fisk, D., Charness, N., Czaja, S. J., Rogers, W. A., & Sharit, J. (2004). Designing for older adults. CRC Press.
  • Frazier, S., Pitts, B. J., & McComb, S. A. (2022). Measuring cognitive workload in automated knowledge work environments: A systematic literature review. Cognition, Technology, & Work, 24, 557–587.
  • Galy, E., Cariou, M., & Mélan, C. (2012). What is the relationship between mental workload factors and cognitive load types? International Journal of Psychophysiology, 83(3), 269–275. https://doi.org/10.1016/j.ijpsycho.2011.09.023
  • Hackman, J. R. (1969). Toward understanding the role of tasks in behavioral research. Acta Psychologica, 31(2), 97–128. https://doi.org/10.1016/0001-6918(69)90073-0
  • Hancock, P. A. (2017). Whither workload? Mapping a path for its future development. Communications in Computer and Information Science, 726, 3–17. https://doi.org/10.1007/978-3-319-61061-0_1
  • Hancock, P. A., & Matthews, G. (2019). Workload and performance: Associations, insensitivities, and dissociations. Human Factors, 61(3), 374–392. https://doi.org/10.1177/0018720818809590
  • Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 904–908. https://doi.org/10.1177/154193120605000909
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In P. A. Hancock & N. Meshkati (Eds.), Human mental workload. Amsterdam: North Holland Press.
  • Hättenschwiler, N., Sterchi, Y., Mendes, M., & Schwaninger, A. (2018). Automation in airport security X-ray screening of cabin baggage: Examining benefits and possible implementations of automated explosives detection. Applied Ergonomics, 72(October), 58–68. https://doi.org/10.1016/j.apergo.2018.05.003
  • Ho, G., Wheatley, D., & Scialfa, C. T. (2005). Age differences in trust and reliance of a medication management system. Interacting with Computers, 17(6), 690–710. https://doi.org/10.1016/j.intcom.2005.09.007
  • Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407–434. https://doi.org/10.1177/0018720814547570
  • Hughes, A. M., Hancock, G. M., Marlow, S. L., Stowers, K., & Salas, E. (2019). Cardiac measures of cognitive workload: A meta-analysis. Human Factors, 61(3), 393–414. https://doi.org/10.1177/0018720819830553
  • Hultsch, D. F., MacDonald, S. W. S., & Dixon, R. A. (2002). Variability in reaction time performance of younger and older adults. The Journals of Gerontology. Series B, Psychological Sciences and Social Sciences, 57(2), P101–P115. https://doi.org/10.1093/geronb/57.2.P101
  • International Organization of Standardization ISO 924-11. (1998).
  • Jacko, J. A., Salvendy, G., & Koubek, R. J. (1995). Modelling of menu design in computerized work. Interacting with Computers, 7(3), 304–330. https://doi.org/10.1016/0953-5438(95)93606-6
  • Jou, Y.-T., Yenn, T.-C., Lin, C. J., Yang, C.-W., & Chiang, C.-C. (2009). Evaluation of operators’ mental workload of human–system interface automation in the advanced nuclear power plants. Nuclear Engineering and Design, 239(11), 2537–2542. https://doi.org/10.1016/j.nucengdes.2009.06.023
  • Kelloway, E. K., & Barling, J. (2000). Knowledge work as organizational behavior. International Journal of Management Reviews, 2(3), 287–304. https://doi.org/10.1111/1468-2370.00042
  • Kogan, S. L., & Muller, M. J. (2006). Ethnographic study of collaborative knowledge work. IBM Systems Journal, 45(4), 759–771. https://doi.org/10.1147/sj.454.0759
  • Leadens, R. E. (2020). Pilot perception of automation use: A generational assessment [Doctoral dissertation]. The University of North Dakota.
  • Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50_30392
  • Lehmann, J., Lalmas, M., Yom-Tov, E., Dupret, G. (2012). Models of user engagement [Paper presentation]. Proceedings of the 20th International Conference on User Modeling, Adaptation, and Personalization (pp. 164–175). https://doi.org/10.1007/978-3-642-31454-4_14
  • Lewandowsky, S., Mundy, M., & Tan, G P. A. (2000). The dynamics of trust: Comparing humans to automation. Journal of Experimental Psychology. Applied, 6(2), 104–123. https://doi.org/10.1037/1076-898X.6.2.104
  • Lewis, J. R. (1995). IBM computer usability satisfaction questionnaires: Psychometric evaluation and instructions for use. International Journal of Human-Computer Interaction, 7(1), 57–78. https://doi.org/10.1080/10447319509526110
  • Li, H., Wickens, C. D., Sarter, N., & Sebok, A. (2014). Stages and levels of automation in support of space teleoperations. Human Factors, 56(6), 1050–1061. https://doi.org/10.1177/0018720814522830
  • Luximon, A., & Goonetilleke, R. S. (2001). Simplified subjective workload assessment technique. Ergonomics, 44(3), 229–243. https://doi.org/10.1080/00140130010000901
  • Maehigashi, A., Miwa, K., Kojima, K., & Terai, H. (2016). Development of a usability questionnaire for automation systems. In International Conference on Human-Computer Interaction (pp. 340–349). Springer.
  • Matthews, G., De Winter, J., & Hancock, P. A. (2020). What do subjective workload scales really measure? Operational and representational solutions to divergence of workload measures. Theoretical Issues in Ergonomics Science, 21(4), 369–396. https://doi.org/10.1080/1463922X.2018.1547459
  • Maynard, D. C., & Hakel, M. D. (1997). Effects of objective and subjective task complexity on performance. Human Performance, 10(4), 303–330. https://doi.org/10.1207/s15327043hup1004_1
  • McDonnell, A. S., Simmons, T. G., Erickson, G. G., Lohani, M., Cooper, J. M., & Strayer, D. L. (2021). This is your brain on autopilot: Neural indices of driver workload and engagement during partial vehicle automation. Human Factors, 001872082110390–187208211039091. https://doi.org/10.1177/00187208211039091
  • Mery, D., Riffo, V., Zscherpel, U., Mondragón, G., Lillo, I., Zuccar, I., Lobel, H., & Carrasco, M. (2015). GDXray: The database of X-ray images for nondestructive testing. Journal of Nondestructive Evaluation, 34(4), 1–12. https://doi.org/10.1007/s10921-015-0315-7
  • Miyake, S. (2001). Multivariate workload evaluation combining physiological and subjective measures. International Journal of Psychophysiology, 40(3), 233–238. https://doi.org/10.1016/S0167-8760(00)00191-4
  • Moacdieh, N., & Sarter, N. (2015). Display clutter: A review of definitions and measurement techniques. Human Factors, 57(1), 61–100. https://doi.org/10.1177/0018720814541145
  • Moray, N., Inagaki, T., & Itoh, M. (2000). Adaptive automation, trust, and self-confidence in fault management of time-critical tasks. Journal of Experimental Psychology. Applied, 6(1), 44–58. https://doi.org/10.1037//1076-898x.6.1.44
  • Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. Ergonomics, 39(3), 429–460. https://doi.org/10.1080/00140139608964474
  • Naik, G., & Bhide, S. S. (2014). Will the future of knowledge work automation transform personalized medicine? Applied & Translational Genomics, 3(3), 50–53. https://doi.org/10.1016/j.atg.2014.05.003
  • Nasreddine, Z. S., Phillips, N. A., Bédirian, V., Charbonneau, S., Whitehead, V., Collin, I., Cummings, J. L., & Chertkow, H. (2005). The Montreal Cognitive Assessment, MoCA: A brief screening tool for mild cognitive impairment. Journal of the American Geriatrics Society, 53(4), 695–699. https://doi.org/10.1111/j.1532-5415.2005.53221.x
  • Nielsen, J., & Levy, J. (1994). Measuring usability: Preference vs. performance. Communications of the ACM, 37(4), 66–75. https://doi.org/10.1145/175276.175282
  • O’Brien, H. L., & Toms, E. G. (2008). What is user engagement? A conceptual framework for defining user engagement with technology. Journal of the American Society for Information Science and Technology, 59(6), 938–955. https://doi.org/10.1002/asi.20801
  • Paas, F. G., & Van Merrienboer, J. J. G. (1993). The efficiency of instructional conditions: An approach to combine mental effort and performance measures. Human Factors, 35(4), 737–743. https://doi.org/10.1177/001872089303500412
  • Parasuraman, R., Sheridan, T. B., & Wickens, C. D. (2000). A model for types and levels of human interaction with automation. IEEE Transactions on Systems, Man, and Cybernetics. Part A, Systems and Human, 30(3), 286–297. https://doi.org/10.1109/3468.844354
  • Park, J., Jeong, H., Park, J., & Lee, B. C. (2018). Relationships between cognitive workload and physiological response under reliable and unreliable automation. Advances in Human Factors and Systems Interaction, 781, 3–8. https://doi.org/10.1007/978-3-319-94334-3_1
  • Patten, C. J. D., Kircher, A., Ostlund, J., Nilsson, L., & Svenson, O. (2006). Driver experience and cognitive workload in different traffic environments. Accident; Analysis and Prevention, 38(5), 887–894. https://doi.org/10.1016/j.aap.2006.02.014
  • Prensky, M. (2001). Digital game-based learning/Mark Prensky. McGraw-Hill.
  • Reid, G. B., & Nygren, T. E. (1988). The subjective workload assessment technique: A scaling procedure for measuring mental workload. In Advances in psychology, 52, 185–218.
  • Robinson, P. (2001). Task complexity, task difficulty, and task production: Exploring interactions in a componential framework. Applied Linguistics, 22(1), 27–57. https://doi.org/10.1093/applin/22.1.27
  • Rouse, W. B. (1981). Human-computer interaction in the control of dynamic systems. ACM Computing Surveys, 13(1), 71–99. https://doi.org/10.1145/356835.356839
  • Sauer, J., Nickel, P., & Wastell, D. (2013). Designing automation for complex work environments under different levels of stress. Applied Ergonomics, 44(1), 119–127. https://doi.org/10.1016/j.apergo.2012.05.008
  • Schaefer, K. E., Chen, J. Y. C., Szalma, J. L., & Hancock, P. A. (2016). A meta-analysis of factors influencing the development of trust in automation: Implications for understanding autonomy in future systems. Human Factors, 58(3), 377–400. https://doi.org/10.1177/0018720816634228
  • Schutte, P. C. (2000). Distance: A metric for flight deck design and function allocation. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 44(1), 85–88. https://doi.org/10.1177/154193120004400123
  • Sheridan, T. B., & Verplank, W. L. (1978). Human and computer control of undersea teleoperators (Technical Report). MIT Man-Machine Systems Laboratory.
  • Sintchenko, V., & Coiera, E. W. (2003). Which clinical decisions benefit from automation? A task complexity approach. International Journal of Medical Informatics, 70(2–3), 309–316. https://doi.org/10.1016/S1386-5056(03)00040-6
  • Sonderegger, A., Schmutz, S., & Sauer, J. (2016). The influence of age in usability testing. Applied Ergonomics, 52(January), 291–300. https://doi.org/10.1016/j.apergo.2015.06.012
  • Squire, P. N., & Parasuraman, R. (2010). Effects of automation and task load on task switching during human supervision of multiple semi-autonomous robots in a dynamic environment. Ergonomics, 53(8), 951–961. https://doi.org/10.1080/00140139.2010.489969
  • Stapel, J., Mullakkal-Babu, F. A., & Happee, R. (2019). Automated driving reduces perceived workload, but monitoring causes higher cognitive load than manual driving. Transportation Research Part F: Traffic Psychology and Behaviour, 60(January), 590–605. https://doi.org/10.1016/j.trf.2018.11.006
  • Steinberger, M., Waldner, M., Streit, M., Lex, A., & Schmalstieg, D. (2011). Context-preserving visual links. IEEE Transactions on Visualization and Computer Graphics, 17(12), 2249–2258. https://doi.org/10.1109/TVCG.2011.183
  • Stohr, E. A., & Zhao, J. L. (2001). Workflow automation: Overview and research issues. Information Systems Frontiers, 3(3), 281–296. https://doi.org/10.1023/A:1011457324641
  • Suchman, L. (2000). Organizing alignment: A case of bridge-building. Organization, 7(2), 311–327. https://doi.org/10.1177/135050840072007
  • Tenbrink, T. (2004). Identifying objects on the basis of spatial contrast: An empirical study. In Spatial cognition IV. Reasoning, action, interaction (pp. 124–146). Springer. https://doi.org/10.1007/978-3-540-32255-9_8
  • U.S. Census Bureau. (2020). 65 and older population grows rapidly as baby boomers age. https://www.census.gov/newsroom/press-releases/2020/65-older-population-grows.html
  • Van Voorhis, C. R. W., & Morgan, B. L. (2007). Understanding power and rules of thumb for determining sample sizes. Tutorials in Quantitative Methods for Psychology, 3(2), 43–50. https://doi.org/10.20982/tqmp.03.2.p043
  • Vogel, E. K., Woodman, G. F., & Luck, S. J. (2001). Storage of features, conjunctions, and objects in visual working memory. Journal of Experimental Psychology. Human Perception and Performance, 27(1), 92–114. https://doi.org/10.1037//0096-1523.27.1.92
  • Wang, W., Li, Z., Wang, Y., & Chen, F. (2013). Indexing cognitive workload based on pupillary response under luminance and emotional changes [Paper presentation]. Proceedings of the 2013 International Conference on Intelligent User Interfaces (pp. 247–256). https://doi.org/10.1145/2449396.2449428
  • Warm, J. S. (1993). Vigilance and target detection. Workload Transition: Implications for Individual and Team Performance, 1, 139–170.
  • Warm, J. S., Dember, W. N., & Hancock, P. A. (1996). Vigilance and workload in automated systems. In R. Parasuraman & M. Mouloua (Eds.), Automation and human performance: Theory and applications (pp. 183–200). Lawrence Erlbaum.
  • Wegner, D. M. (1994). Ironic processes of mental control. Psychological Review, 101(1), 34–52. https://doi.org/10.1037/0033-295X.101.1.34
  • Williams, K. C., & Page, R. A. (2011). Marketing to the generations. Journal of Behavioral Studies in Business, 3(1), 37–53.
  • Wood, R. E. (1986). Task complexity: Definition of the construct. Organizational Behavior and Human Decision Processes, 37(1), 60–82. https://doi.org/10.1016/0749-5978(86)90044-0
  • Yoo, A. H., Klyszejko, Z., Curtis, C. E., & Ma, W. J. (2018). Strategic allocation of working memory resource. Scientific Reports, 8(1), 16162–16168. https://doi.org/10.1038/s41598-018-34282-1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.