168
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

The Effect of Task Fidelity on Learning Curves: A Synthetic Analysis

, , , &
Pages 2253-2267 | Received 12 Oct 2021, Accepted 18 Aug 2022, Published online: 29 Jan 2023

References

  • Alessi, S. M. (1988). Fidelity in the design of instructional simulations. Journal of Computer-Based Instruction, 15(2), 40–47.
  • Alessi, S. M., & Trollip, S. R. (1991). Computer-based instruction: Methods and development. Prentice-Hall.
  • Allen, J. A., Hays, R. T., & Buffardi, L. C. (1986). Maintenance training simulator fidelity and individual differences in transfer of training. Human Factors, 28(5), 497–509. https://doi.org/10.1177/001872088602800501
  • Alluisi, E. A. (1991). The development of technology for collective training: SIMNET, a case history. Human Factors, 33(3), 343–362. https://doi.org/10.1177/001872089103300308
  • Anderson, J. R. (2007). How can the human mind occur in the physical universe? Oxford University Press.
  • Batran, K. E., & Dunlop, M. D. (2014). Enhancing KLM (Keystroke-Level Model) to fit touch screen mobile devices. MobileCHI (pp. 283–286).
  • Booher, H. R., & Minninger, J. (2003). Human systems integration in Army systems acquisition. In H. R. Booher (Ed.), Handbook of human systems integration (pp. 663–698). John Wiley.
  • Burns, M., Ritter, F. E., & Zhang, X. (2016). Using naturalistic typing to update architecture typing constants. Proceedings of ICCM, 14th International Conference on Cognitive Modeling (ICCM 2016) (pp. 169–175). Penn State.
  • Card, S. K., Moran, T., & Newell, A. (1983). The psychology of human-computer interaction. Erlbaum.
  • Card, S. K., Moran, T. P., & Newell, A. (1980). The Keystroke-Level Model for user performance time with interactive systems. Communications of the ACM, 23(7), 396–410. https://doi.org/10.1145/358886.358895
  • Caro, P. W., Isley, R. N., & Jolley, P. B. (1973). Research on synthetic training: Device evaluation and training program development (Technical Report 73-20). Human Resources Research Organization (HumRRO), Division No. 6 (Aviation).
  • Charvat, G. L. (2011). MIT IAP 2011 laptop based radar: Block diagram, schematics, bill of material, and fabrication instructions. https://ocw.mit.edu/resources/res-ll-003-build-a-small-radar-system-capable-of-sensing-range-doppler-and-synthetic-aperture-radar-imaging-january-iap-2011/
  • Crossman, E. R. F. W. (1959). A theory of the acquisition of speed-skill. Ergonomics, 2(2), 153–166. https://doi.org/10.1080/00140135908930419
  • Dahlstrom, N., Dekker, S., van Winsen, R., & Nyce, J. (2009). Fidelity and validity of simulator training. Theoretical Issues in Ergonomics Science, 10(4), 305–314. https://doi.org/10.1080/14639220802368864
  • Delaney, P. F., Reder, L. M., Staszewski, J. J., & Ritter, F. E. (1998). The strategy specific nature of improvement: The power law applies by strategy within task. Psychological Science, 9(1), 1–7. https://doi.org/10.1111/1467-9280.00001
  • Ericsson, K. A., Krampe, R. T., & Tesch-Römer, C. (1993). The role of deliberate practice in the acquisition of expert performance. Psychological Review, 100(3), 363–406. https://doi.org/10.1037/0033-295X.100.3.363
  • Friedrich, M. B., & Ritter, F. E. (2020). Understanding strategy differences in a diagrammatic reasoning task. Cognitive Systems Research, 59(1), 133–150. https://doi.org/10.1016/j.cogsys.2019.09.017
  • Gluck, K. A., Jastrzembski, T. S., & Krusmark, M. A. (2019). Prospective comments on performance prediction for aviation psychology. In M. A. Vidulich & P. S. Tsang (Eds.), Improving aviation performance through applying engineering psychology (pp. 80–99). CRC Press.
  • Gong, R., & Kieras, D. E. (1994). A validation of the GOMS model methodology in the development of a specialized, commercial software application. Proceedings of CHI, 1994 (pp. 351–357). ACM.
  • Havinghurst, L. C., Fields, L. E., & Fields, C. L. (2003). High versus low fidelity simulations: Does the type of format affect candidates’ performance or perceptions?. 27th Annual IPMAAC Conference on Personnel Assessment: Exploring New Horizons in Assessment.
  • Hursh, S. R., Redmond, D. P., Johnson, M. L., Thorne, D. R., Belenky, G., & Balkin, T. J. (2004). Fatigue models for applied research in warfighting. Aviation, Space, and Environmental Medicine, 73(3), A44–A53.
  • Jastrzembski, T. S., Addis, K., Krusmark, M., Gluck, K. A. (2010). Prediction intervals for performance prediction. In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of ICCM – 2010 – Tenth International Conference on Cognitive Modeling (pp. 109–114). Drexel University.
  • John, B. E., & Jastrzembski, T. S. (2010). Exploration of costs and benefits of predictive human performance modeling for design. In D. D. Salvucci & G. Gunzelmann (Eds.), Proceedings of the 10th International Conference on Cognitive Modeling (pp. 115–120). Drexel University.
  • John, B. E., & Kieras, D. E. (1996). The GOMS family of user interface analysis techniques: Comparison and contrast. ACM Transactions on Computer-Human Interaction, 3(4), 320–351. https://doi.org/10.1145/235833.236054
  • John, B. E., Prevas, K., Salvucci, D. D., & Koedinger, K. (2004). Predictive human performance modeling made easy. Proceedings of CHI 2004 (Vienna, Austria, April 2004) (pp. 455–462). ACM.
  • Katsanos, C., Karousos, N., Tselios, N., Xenos, M., & Avouris, N. (2013). KLM form analyzer: Automated evaluation of web form filling tasks using human performance models. Human-Computer Interaction – INTERACT 2013. INTERACT 2013. Lecture Notes in Computer Science (Vol. 8118, pp. 530–537). Springer.
  • Kieras, D. E., & Bovair, S. (1984). The role of a mental model in learning how to operator a device. Cognitive Science, 8(3), 255–273. https://doi.org/10.1207/s15516709cog0803_3
  • Kim, J. W., & Ritter, F. E. (2016). Microgenetic analysis of learning a task: Its implications to cognitive modeling. In Proceedings of the 14th International Conference on Cognitive Modeling (ICCM 2016) (pp. 21–26). ACS Lab.
  • Kim, J. W., & Ritter, F. E. (2021). A microgenetic analysis of subtask learning using a Bayesian hierarchical modeling approach: Subtasks are learned at different rates. In preparation.
  • Lesgold, A. M., Lajoie, S., Bunzon, M., & Eggan, E. (1992). SHERLOCK: A coached practice environment for an electronics troubleshooting job. In J. Larkin, R. Chabay & C. Scheftic (Eds.), Computer assisted instruction and intelligent tutoring systems: Establishing communication and collaboration. Erlbaum.
  • Liu, D., Macchiarella, N. D., & Vincenzi, D. A. (2009). Simulation fidelity. In Human factors in simulation and training (pp. 61–73): Taylor & Francis.
  • Miller, R. B. (1954). Psychological considerations in the design of training equipment (WADC Report No. 54-563, AD 71202). Carpenter Litho & Prtg. Co.
  • Moreno, R., & Mayer, R. E. (2002). Learning science in virtual reality environments: Role of methods and media. Journal of Educational Psychology, 94(3), 598–610. https://doi.org/10.1037/0022-0663.94.3.598.
  • Newell, A. (1990). Unified theories of cognition. Harvard University Press.
  • Newell, A., & Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In J. R. Anderson (Ed.), Cognitive skills and their acquisition (pp. 1–51). Erlbaum.
  • Noble, C. (2002). The relationship between fidelity and learning in aviation training and assessment. Journal of Air Transportation, 7(3), 34–54. https://ntrs.nasa.gov/citations/20020074981
  • Pew, R. W., & Mavor, A. S. (Eds.). (2007). Human-system integration in the system development process: A new look. National Academy Press. books.nap.edu/catalog/11893, checked May 2019.
  • Prophet, W. W., & Boyd, H. A. (1970). Device-task fidelity and transfer of training: Aircraft cockpit procedures training (Technical Report 70–10). Human Resources Research Organization (HumRRO), Division No. 6 (Aviation).
  • Ritter, F. E. (2019). Modeling human cognitive behavior for system design. In S. Scataglini & G. Paul (Eds.), DHM and posturography (pp. 517–525). Academic Press.
  • Ritter, F. E., & Bibby, P. A. (2008). Modeling how, when, and what is learned in a simple fault-finding task. Cognitive Science, 32(5), 862–892. https://doi.org/10.1080/03640210802221999
  • Ritter, F. E., & McDermott, A. F. (2020). The effect of task fidelity on learning curves. Proceedings of the 18th International Conference on Cognitive Modeling (ICCM 2020) (pp. 229–235).
  • Ritter, F. E., Schoelles, M. J., Quigley, K. S., & Klein, L. C. (2011). Determining the number of model runs: Treating cognitive models as theories by not sampling their behavior. In L. Rothrock & S. Narayanan (Eds.), Human-in-the-loop simulations: Methods and practice (pp. 97–116). Springer-Verlag.
  • Ritter, F. E., & Schooler, L. J. (2001). The learning curve. In W. Kintch, N. Smelser, & P. Baltes (Eds.), International encyclopedia of the social and behavioral sciences (Vol. 13, pp. 8602–8605). Pergamon.
  • Ritter, F. E., Tehranchi, F., Brener, M., & Wang, S. (2019). Testing a complex training task. Proceedings of the 17th International Conference on Cognitive Modeling (ICCM 2019) (pp. 184–185).
  • Ritter, F. E., Tehranchi, F., & Oury, J. D. (2019). ACT-R: A cognitive architecture for modeling cognition. Wiley Interdisciplinary Reviews. Cognitive Science, 10(3), e1488. https://doi.org/10.1002/wcs.1488
  • Rosenbloom, P. S., & Newell, A. (1987). Learning by chunking, a production system model of practice. In D. Klahr, P. Langley, & R. Neches (Eds.), Production system models of learning and development (pp. 221–286). MIT Press.
  • Seibel, R. (1963). Discrimination reaction time for a 1,023-alternative task. Journal of Experimental Psychology, 66(3), 215–226. https://doi.org/10.1037/h0048914
  • Siegler, R. S. (1987). The perils of averaging data over strategies: An example from children’s addition. Journal of Experimental Psychology: General, 116(3), 250–264. https://doi.org/10.1037/0096-3445.116.3.250
  • Snoddy, G. S. (1926). Learning and stability. Journal of Applied Psychology, 10(1), 1–36. https://doi.org/10.1037/h0075814
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1207/s15516709cog1202_4
  • Sweller, J. (2007). All is in order. In F. E. Ritter, J. Nerb, E. Lehtinen, & T. O'Shea (Eds.), In order to learn: How the sequences of topics affect learning (pp. 215–224). Oxford University Press.
  • Swezey, R. W., Perez, R. S., & Allen, J. A. (1991). Effects of instructional strategy and motion presentation conditions on the acquisition and transfer of electromechanical troubleshooting skill. Human Factors, 33(3), 309–323. https://doi.org/10.1177/001872089103300306
  • Thorndike, E. L., & Woodworth, R. S. (1901). The influence of improvement in one mental function upon the efficiency of other functions (I.). Psychological Review, 8(3), 247–261. https://doi.org/10.1037/h0074898
  • van Dongen, H. P. A. (2004). Comparison of mathematical model predictions to experimental data of fatigue and performance. Aviatation, Space, and Environmental Medicine, 75(3, Section II), A15–36.
  • Vogel-Walcutt, J. (2010). APPLE, algorithms physiologically-derived to promote learning efficiency. University of Central Florida.
  • Wallach, D. P., Fackert, S., & Albach, V. (2019). Predictive prototyping for real-world applications: A model-based evaluation approach based on the ACT-R cognitive architecture. DIS '19: Proceedings of the 2019 on Designing Interactive Systems Conference (pp. 1495–1502).
  • Walsh, M. M., Gluck, K. A., Gunzelmann, G., Jastrzembski, T., & Krusmark, M. (2018). Evaluating the theoretical adequacy and applied potential of computational models of the spacing effect. Cognitive Science, 42(Suppl 3), 644–691. https://doi.org/10.1111/cogs.12602

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.