187
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Effects of Seated Postural Sway on Visually Induced Motion Sickness: A Multiple Regression and RUSBoost Classification Approach

& ORCID Icon
Pages 1782-1793 | Received 26 Sep 2022, Accepted 03 Apr 2023, Published online: 20 Apr 2023

References

  • Arcioni, B., Palmisano, S., Apthorp, D., & Kim, J. (2019). Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays, 58, 3–11. https://doi.org/10.1016/j.displa.2018.07.001
  • Bailey, G. S., Arruda, D. G., & Stoffregen, T. A. (2022). Using quantitative data on postural activity to develop methods to predict and prevent cybersickness. Frontiers in Virtual Reality, 3, 1001080. https://doi.org/10.3389/frvir.2022.1001080
  • Blade, R. A., & Padgett, M. L. (2002). Virtual environments standards and terminology. In Handbook of virtual environments (pp. 55–68). CRC Press.
  • Bolbecker, A. R., Hong, S. L., Kent, J. S., Klaunig, M. J., O'Donnell, B. F., & Hetrick, W. P. (2011). Postural control in bipolar disorder: Increased sway area and decreased dynamical complexity. PLOS One, 6(5), e19824. https://doi.org/10.1371/journal.pone.0019824
  • Bonnet, C. T., Faugloire, E., Riley, M. A., Bardy, B. G., & Stoffregen, T. A. (2008). Self-induced motion sickness and body movement during passive restraint. Ecological Psychology, 20(2), 121–145. https://doi.org/10.1080/10407410801949289
  • Chang, C. H., Stoffregen, T. A., Tseng, L. Y., Lei, M. K., & Cheng, K. B. (2021). Control of a virtual vehicle influences postural activity and motion sickness in pre-adolescent children. Human Movement Science, 78, 102832. https://doi.org/10.1016/j.humov.2021.102832
  • Chardonnet, J.-R., Mirzaei, M. A., Merienne, F. (2015). Visually induced motion sickness estimation and prediction in virtual reality using frequency components analysis of postural sway signal. In International Conference on Artificial Reality and Telexistence Eurographics Symposium on Virtual Environments (pp. 9–16).
  • Chen, Y. C., Duann, J. R., Chuang, S. W., Lin, C. L., Ko, L. W., Jung, T. P., & Lin, C. T. (2010). Spatial and temporal EEG dynamics of motion sickness. NeuroImage, 49(3), 2862–2870. https://doi.org/10.1016/j.neuroimage.2009.10.005
  • Chuang, S. W., Chuang, C. H., Yu, Y. H., King, J. T., & Lin, C. T. (2016). EEG alpha and gamma modulators mediate motion sickness-related spectral responses. International Journal of Neural Systems, 26(2), 1650007. https://doi.org/10.1142/S0129065716500076
  • Cohen, P., Cohen, P., West, S. G., & Aiken, L. S. (2014). Applied multiple regression/correlation analysis for the behavioral sciences. Psychology Press. https://doi.org/10.4324/9781410606266
  • Daoud, J. I. (2017). Multicollinearity and regression analysis. Journal of Physics: Conference Series, 949(1), 012009. https://doi.org/10.1088/1742-6596/949/1/012009
  • Dennison, M. S., & D'Zmura, M. (2018). Effects of unexpected visual motion on postural sway and motion sickness. Applied Ergonomics, 71, 9–16. https://doi.org/10.1016/j.apergo.2018.03.015
  • Dennison, M. S., Wisti, A. Z., & D’Zmura, M. (2016). Use of physiological signals to predict cybersickness. Displays, 44, 42–52. https://doi.org/10.1016/j.displa.2016.07.002
  • Dong, X., Yoshida, K., & Stoffregen, T. A. (2011). Control of a virtual vehicle influences postural activity and motion sickness. Journal of Experimental Psychology. Applied, 17(2), 128–138. https://doi.org/10.1037/a0024097
  • Fernandes, A. S., & Feiner, S. K. (2016). Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 201–210). https://doi.org/10.1109/3DUI.2016.7460053
  • Gardener, S. L., Lyons-Wall, P., Martins, R. N., & Rainey-Smith, S. R. (2020). Validation and reliability of the Alzheimer’s disease-commonwealth scientific and industrial research organisation food frequency questionnaire. Nutrients, 12(12), 3605. https://doi.org/10.3390/nu12123605
  • Islam, R., Lee, Y., Jaloli, M., Muhammad, I., Zhu, D., Rad, P., Huang, Y., & Quarles, J. (2020, November). Automatic detection and prediction of cybersickness severity using deep neural networks from user’s physiological signals. In 2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 400–411). https://doi.org/10.1109/ISMAR50242.2020.00066
  • Kim, Y. Y., Kim, H. J., Kim, E. N., Ko, H. D., & Kim, H. T. (2005). Characteristic changes in the physiological components of cybersickness. Psychophysiology, 42(5), 616–625. https://doi.org/10.1111/j.1469-8986.2005.00349.x
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in visually induced motion sickness. Applied Ergonomics, 41(4), 494–503. https://doi.org/10.1016/j.apergo.2009.11.006
  • Kennedy, R. S., & Stanney, K. M. (1996). Postural instability induced by virtual reality exposure: Development of a certification protocol. International Journal of Human–Computer Interaction, 8(1), 25–47. https://doi.org/10.1080/10447319609526139
  • Koslucher, F., Munafo, J., & Stoffregen, T. A. (2016). Postural sway in men and women during nauseogenic motion of the illuminated environment. Experimental Brain Research, 234(9), 2709–2720. https://doi.org/10.1007/s00221-016-4675-8
  • Lambooij, M., Ijsselsteijn, W., Fortuin, M., & Heynderickx, I. (2009). Visual discomfort and visual fatigue of stereoscopic displays: A review. Journal of Imaging Science and Technology, 53(3), 30201-1–30201-14. https://doi.org/10.2352/J.ImagingSci.Technol.2009.53.3.030201
  • Li, R., Peterson, N., Walter, H. J., Rath, R., Curry, C., & Stoffregen, T. A. (2018). Real-time visual feedback about postural activity increases postural instability and visually induced motion sickness. Gait & Posture, 65, 251–255. https://doi.org/10.1016/j.gaitpost.2018.08.005
  • Martin Bland, J., & Altman, D. (1986). Statistical methods for assessing agreement between two methods of clinical measurement. The Lancet, 327(8476), 307–310. https://doi.org/10.1016/s0140-6736(86)90837-8
  • Merhi, O., Faugloire, E., Flanagan, M., & Stoffregen, T. A. (2007). Motion sickness, console video games, and head-mounted displays. Human Factors, 49(5), 920–934. https://doi.org/10.1518/001872007X230262
  • Mittelstaedt, J. M. (2020). Individual predictors of the susceptibility for motion-related sickness: A systematic review. Journal of Vestibular Research: Equilibrium & Orientation, 30(3), 165–193. https://doi.org/10.3233/VES-200702
  • Moss, J. D., & Muth, E. R. (2011). Characteristics of head-mounted displays and their effects on simulator sickness. Human Factors, 53(3), 308–319. https://doi.org/10.1177/0018720811405196
  • Naqvi, S. A. A., Badruddin, N., Malik, A. S., Hazabbah, W., & Abdullah, B. (2013). Does 3D produce more symptoms of visually induced motion sickness? In 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 6405–6408). https://doi.org/10.1109/EMBC.2013.6611020
  • Nie, G., Liu, Y., & Wang, Y. (2017). Prevention of visually induced motion sickness based on dynamic real-time content-aware non-salient area blurring. In 2017 IEEE International Symposium on Mixed and Augmented Reality (ISMAR-Adjunct) (pp. 75–78). https://doi.org/10.1109/ISMAR-Adjunct.2017.35
  • Nooij, S. A. E., Pretto, P., Oberfeld, D., Hecht, H., & Bülthoff, H. H. (2017). Vection is the main contributor to motion sickness induced by visual yaw rotation: Implications for conflict and eye movement theories. PLOS One, 12(4), e0175305. https://doi.org/10.1371/journal.pone.0175305
  • Ojala, M., & Garriga, G. C. (2010). Permutation tests for studying classifier performance. Journal of Machine Learning Research, 11(6), 1833–1863. https://doi.org/10.1109/ICDM.2009.108
  • Oliveira, L., Simpson, D., & Nadal, J. (1996). Calculation of area of stabilometric signals using principal component analysis. Physiological Measurement, 17(4), 305–312. https://doi.org/10.1088/0967-3334/17/4/008
  • Ong, S. K., & Nee, A. Y. C. (2013). Virtual and augmented reality applications in manufacturing. Springer Science & Business Media.
  • Paillard, A. C., Quarck, G., Paolino, F., Denise, P., Paolino, M., Golding, J. F., & Ghulyan-Bedikian, V. (2013). Motion sickness susceptibility in healthy subjects and vestibular patients: Effects of gender, age and trait-anxiety. Journal of Vestibular Research: Equilibrium & Orientation, 23(4–5), 203–209. https://doi.org/10.3233/VES-130501
  • Padmanaban, N., Ruban, T., Sitzmann, V., Norcia, A. M., & Wetzstein, G. (2018). Towards a machine-learning approach for sickness prediction in 360 degrees stereoscopic videos. IEEE Transactions on Visualization and Computer Graphics, 24(4), 1594–1603. https://doi.org/10.1109/TVCG.2018.2793560
  • Park, S., & Whang, M. (2018). Infrared camera-based non-contact measurement of brain activity from pupillary rhythms. Frontiers in Physiology, 9, 1400. https://doi.org/10.3389/fphys.2018.01400
  • Park, S., Won, M. J., Lee, D. W., & Whang, M. (2018). Non-contact measurement of heart response reflected in human eye. International Journal of Psychophysiology, 123, 179–198. https://doi.org/10.1016/j.ijpsycho.2017.07.014
  • Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101–125. https://doi.org/10.1007/s10055-016-0285-9
  • Reed-Jones, R. J., Vallis, L. A., Reed-Jones, J. G., & Trick, L. M. (2008). The relationship between postural stability and virtual environment adaptation. Neuroscience Letters, 435(3), 204–209. https://doi.org/10.1016/j.neulet.2008.02.047
  • Shahal, A., Hemmerich, W., & Hecht, H. (2016). Brightness and contrast do not affect visually induced motion sickness in a passively-flown fixed-base flight simulator. Displays, 44, 5–14. https://doi.org/10.1016/j.displa.2016.05.007
  • Sharples, S., Cobb, S., Moody, A., & Wilson, J. R. (2008). Virtual reality induced symptoms and effects (VRISE): Comparison of head mounted display (HMD), desktop and projection display systems. Displays, 29(2), 58–69. https://doi.org/10.1016/j.displa.2007.09.005
  • Słowiński, P., Zhai, C., Alderisio, F., Salesse, R., Gueugnon, M., Marin, L., Bardy, B. G., di Bernardo, M., & Tsaneva-Atanasova, K. (2016). Dynamic similarity promotes interpersonal coordination in joint action. Journal of the Royal Society Interface, 13(116), 20151093. https://doi.org/10.1098/rsif.2015.1093
  • Smart, L. J. Jr., Stoffregen, T. A., & Bardy, B. G. (2002). Visually induced motion sickness predicted by postural instability. Human Factors, 44(3), 451–465. https://doi.org/10.1518/0018720024497745
  • Smart, L. J., Drew, A., Hadidon, T., Teaford, M., & Bachmann, E. (2021). Simulation and virtual reality using nonlinear kinematic parameters as a means of predicting motion sickness in real-time in virtual environments. Human Factors, 64, 00187208211059623. https://doi.org/10.1177/0018720821105962
  • Stoffregen, T. A., Chang, C. H., Chen, F. C., & Zeng, W. J. (2017). Effects of decades of physical driving on body movement and motion sickness during virtual driving. PLOS One, 12(11), e0187120. https://doi.org/10.1371/journal.pone.0187120
  • Stoffregen, T. A., Yoshida, K., Villard, S., Scibora, L., & Bardy, B. G. (2010). Stance width influences postural stability and motion sickness. Ecological Psychology, 22(3), 169–191. https://doi.org/10.1080/10407413.2010.496645
  • Stoffregen, T. A., Hettinger, L. J., Haas, M. W., Roe, M. M., & Smart, L. J. (2000). Postural instability and motion sickness in a fixed-based flight simulator. Human Factors, 42(3), 458–469. https://doi.org/10.1518/001872000779698097
  • Stoffregen, T. A., & Smart, L. J. Jr. (1998). Postural instability precedes motion sickness. Brain Research Bulletin, 47(5), 437–448. https://doi.org/10.1016/s0361-9230(98)00102-6
  • Taylor, R. (1990). Interpretation of the correlation coefficient: A basic review. Journal of Diagnostic Medical Sonography, 6(1), 35–39. https://doi.org/10.1177/875647939000600106
  • Tyrrell, R., Sarig-Bahat, H., Williams, K., Williams, G., & Treleaven, J. (2018). Simulator sickness in patients with neck pain and vestibular pathology during virtual reality tasks. Virtual Reality, 22(3), 211–219. https://doi.org/10.1007/s10055-017-0324-1
  • Villard, S. J., Flanagan, M. B., Albanese, G. M., & Stoffregen, T. A. (2008). Postural instability and motion sickness in a virtual moving room. Human Factors, 50(2), 332–345. https://doi.org/10.1518/001872008X250728
  • Weech, S., Varghese, J. P., & Barnett-Cowan, M. (2018). Estimating the sensorimotor components of cybersickness. Journal of Neurophysiology, 120(5), 2201–2217. https://doi.org/10.1152/jn.00477.2018
  • Widdowson, C., Becerra, I., Merrill, C., Wang, R. F., & LaValle, S. (2021). Assessing postural instability and cybersickness through linear and angular displacement. Human Factors, 63(2), 296–311. https://doi.org/10.1177/0018720819881254
  • Yokota, Y., Aoki, M., Mizuta, K., Ito, Y., & Isu, N. (2005). Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Oto-Laryngologica, 125(3), 280–285. https://doi.org/10.1080/00016480510003192
  • Zużewicz, K., Saulewicz, A., Konarska, M., & Kaczorowski, Z. (2011). Heart rate variability and motion sickness during forklift simulator driving. International Journal of Occupational Safety and Ergonomics, 17(4), 403–410. https://doi.org/10.1080/10803548.2011.11076903

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.