247
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The CoDIS Taxonomy for Brain-Computer Interface Games Controlled by Electroencephalography

ORCID Icon &
Received 05 Oct 2022, Accepted 27 Mar 2023, Published online: 07 May 2023

References

  • Abiri, R., Borhani, S., Sellers, E. W., Jiang, Y., & Zhao, X. (2019). A comprehensive review of EEG-based brain–computer interface paradigms. Journal of Neural Engineering, 16(1), 011001. https://doi.org/10.1088/1741-2552/aaf12e
  • Adams, E. (2014). Fundamentals of game design (3rd ed.). New Riders Publishing.
  • Ahn, S., Kim, K., & Jun, S. C. (2016). Steady-state somatosensory evoked potential for brain-computer interface–present and future. Frontiers in Human Neuroscience, 9, 716. https://doi.org/10.3389/fnhum.2015.00716
  • Akhtar, A., Norton, J. J. S., Kasraie, M., & Bretl, T. (2014). Playing checkers with your mind: An interactive multiplayer hardware game platform for brain-computer interfaces. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (Vol. 2014, pp. 1650–1653). IEEE. https://doi.org/10.1109/EMBC.2014.6943922
  • Al-Qaysi, Z., Zaidan, B., Zaidan, A., & Suzani, M. (2018). A review of disability EEG based wheelchair control system: Coherent taxonomy, open challenges and recommendations. Computer Methods and Programs in Biomedicine, 164, 221–237. https://doi.org/10.1016/j.cmpb.2018.06.012
  • Al-Qaysi, Z. T., Ahmed, M. A., Hammash, N. M., Hussein, A. F., Albahri, A. S., Suzani, M. S., Al-Bander, B., Shuwandy, M. L., & Salih, M. M. (2021). Systematic review of training environments with motor imagery brain–computer interface: Coherent taxonomy, open issues and recommendation pathway solution. Health and Technology, 11(4), 783–801. https://doi.org/10.1007/s12553-021-00560-8
  • Annese, V. F., Mezzina, G., & De Venuto, D. (2016) Towards mobile health care: Neurocognitive impairment monitoring by BCI-based game. In 2016 IEEE sensors (pp. 1–3). IEEE. https://doi.org/10.1109/ICSENS.2016.7808745
  • Antle, A. N., Chesick, L., & Mclaren, E.-S. (2017) Opening up the design space of neurofeedback brain–computer interfaces for children. ACM Transactions on Computer-Human Interaction, 24(6), 1–33. https://doi.org/10.1145/3131607
  • Arns, M., Conners, C. K., & Kraemer, H. C. (2013) A decade of EEG theta/beta ratio research in ADHD. Journal of Attention Disorders, 17(5), 374–383. https://doi.org/10.1177/1087054712460087
  • Arslan, R. B., & Filiz, E. (2022). Enhancement of player experience in video games using EEG based dynamic difficulty adjustment [Paper presentation]. 2022 International Conference on INnovations in Intelligent SysTems and Applications (INISTA). IEEE. https://doi.org/10.1109/inista55318.2022.9894125
  • Azman, N. H., Mansor, W., & Lee, K. Y. (2017). Neuro based racing car for cognitive training [Paper presentation]. 2017 IEEE 15th Student Conference on Research and Development (Scored) (pp. 473–476). IEEE. https://doi.org/10.1109/SCORED.2017.8305437
  • Bablani, A., Edla, D. R., Tripathi, D., & Cheruku, R. (2020) Survey on brain-computer interface: An emerging computational intelligence paradigm. ACM Computing Surveys, 52(1), 1–32. https://doi.org/10.1145/3297713
  • Banville, H., & Falk, T. (2016) Recent advances and open challenges in hybrid brain-computer interfacing: A technological review of non-invasive human research. Brain-Computer Interfaces, 3(1), 9–46. https://doi.org/10.1080/2326263X.2015.1134958
  • Beveridge, R., Marshall, D., Wilson, S., & Coyle, D. (2015). Classification effects on Motion-Onset Visual Evoked Potentials using commercially available video games [Paper presentation]. Proceedings of the 20th International Conference on Computer Games: Ai, Animation, Mobile, Interactive Multimedia, Educational and Serious Games (pp. 28–37). https://doi.org/10.1109/CGames.2015.7272958
  • Beveridge, R., Wilson, S., Callaghan, M., & Coyle, D. (2019) Neurogaming with motion-onset visual evoked potentials (MVEPs): Adults versus teenagers. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(4), 572–581. https://doi.org/10.1109/TNSRE.2019.2904260
  • Bordoloi, S., Sharmah, U., & Hazarika, S. M. (2012). Motor imagery based BCI for a maze game [Paper presentation]. 2012 4th International Conference on Intelligent Human Computer Interaction (IHCI) (pp. 1–6). IEEE. https://doi.org/10.1109/IHCI.2012.6481848
  • Bos, D. P., Reuderink, B., Laar, B., Gürkök, H., Mühl, C., Poel, M., Nijholt, A., & Heylen, D. (2010). Brain-computer interfacing and games. In D. Tan & A. Nijholt (Eds.), Brain-computer interfaces (pp. 149–178). Springer.
  • Choi, I., Rhiu, I., Lee, Y., Yun, M. H., & Nam, C. S. (2017). A systematic review of hybrid brain-computer interfaces: Taxonomy and usability perspectives. Plos One, 12(4), e0176674. https://doi.org/10.1371/journal.pone.0176674
  • Chumerin, N., Manyakov, N. V., van Vliet, M., Robben, A., Combaz, A., & Hulle, M. M. V. (2013). Steady-state visual evoked potential-based computer gaming on a consumer-grade EEG device. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 100–110. https://doi.org/10.1109/TCIAIG.2012.2225623
  • Congedo, M., Goyat, M., Tarrin, N., Ionescu, G., Varnet, L., Rivet, B., Phlypo, R., Jrad, N., Acquadro, M., & Jutten, C. (2011). “Brain invaders”: A prototype of an open-source p300-based video game working with the OpenVIBE platform [Paper presentation]. Proceedings of the 5th International Brain-Computer Interface Conference (pp. 280–283).
  • Crawford, C. (1984). The art of computer game design (1st ed.). McGraw-Hill/Osborne Media.
  • Cruz, I., Moreira, C., Poel, M., Ferreira, H., & Nijholt, A. (2018). Kessel run–A cooperative multiplayer SSVEP BCI game. In Lecture notes of the Institute for Computer Sciences, Social-Informatics and Telecommunications Engineering, LNICST (Vol. 215, pp.77–95). Springer. https://doi.org/10.1007/978-3-319-73062-2_6
  • De Venuto, D., Annese, V. F., Mezzina, G., Ruta, M., & Di Sciascio, E. (2016). Brain-computer interface using P300: A gaming approach for neurocognitive impairment diagnosis [Paper presentation]. 2016 IEEE International High Level Design Validation and Test Workshop (HLDVT) (pp. 93–99). IEEE. https://doi.org/10.1109/HLDVT.2016.7748261
  • Demazure, T., Karran, A. J., Boasen, J., Léger, P.-M., & Sénécal, S. (2021). Distributed remote EEG data collection for NeuroIS research: A methodological framework. In Augmented cognition (pp. 3–22). Springer International Publishing. https://doi.org/10.1007/978-3-030-78114-9_1
  • de Miranda, L. C., Hornung, H. H., & Baranauskas, M. C. C. (2010). Adjustable interactive rings for iDTV. IEEE Transactions on Consumer Electronics, 56(3), 1988–1996. https://doi.org/10.1109/TCE.2010.5606356
  • de Miranda, L. C., Hornung, H. H., Pereira, R., & Baranauskas, M. C. C. (2013). Exploring adjustable interactive rings in game playing: Preliminary results. In Proceedings of the 2nd international conference on design, user experience and usability (DUXU)/15th international conference on human-computer interaction (HCII), Las Vegas, USA (lecture notes in computer science) (Vol. 8013, pp. 518–527). Springer.
  • Fernandez, H., Mikami, K., & Kondo, K. (2016). Adaptable game experience through procedural content generation and brain computer interface [Paper presentation]. ACM SIGGRAPH 2016 Posters (SIGGRAPH’16) (p. 2). https://doi.org/10.1145/2945078.2945124
  • Fernandez, H. D., Mikami, K., & Kondo, K. (2017). Adaptable game experience based on player’s performance and EEG [Paper presentation]. 2017 Nicograph International (NicoInt) (pp. 1–8). IEEE. https://doi.org/10.1109/NICOInt.2017.11
  • Ferreira, A. L. S., de Miranda, L. C., de Miranda, E. E. C., & Sakamoto, S. G. (2013). A survey of interactive systems based on brain-computer interfaces. Journal on Interactive Systems, 4(1), 1. https://doi.org/10.5753/jis.2013.623
  • Ferreira, A. L. S., Marciano, J. N., de Miranda, L. C., & de Miranda, E. E. C. (2014). Understanding and proposing a design rationale of digital games based on brain-computer interface: Results of the Admiralmind Battleship study. Journal on Interactive Systems, 5(1), 1. https://doi.org/10.5753/jis.2014.638
  • Fiałek, S., & Liarokapis, F. (2016). Comparing two commercial brain computer interfaces for serious games and virtual environments. In Socio-affective computing (pp. 103–117). Springer. https://doi.org/10.1007/978-3-319-41316-7_6
  • Gevensleben, H., Albrecht, B., Lütcke, H., Auer, T., Dewiputri, W. I., Schweizer, R., Moll, G., Heinrich, H., & Rothenberger, A. (2014). Neurofeedback of slow cortical potentials: Neural mechanisms and feasibility of a placebo-controlled design in healthy adults. Frontiers in Human Neuroscience, 8, 990. https://doi.org/10.3389/fnhum.2014.00990
  • Gürkök, H., Nijholt, A., Poel, M., & Obbink, M. (2013). Evaluating a multi-player brain-computer interface game: Challenge versus co-experience. Entertainment Computing, 4(3), 195–203. https://doi.org/10.1016/j.entcom.2012.11.001
  • Henrik, C., Olle, H., Craig, L., Charlotte, S., Jeanette, E. (2011). The aiming game: Using a game with biofeedback for training in emotion regulation [Paper presentation]. Proceedings of the 2011 Digra International Conference: Think Design Play (Digra’11) (p. 18).
  • Herz, J. C. (1997). Joystick nation: How videogames ate quarters, won our hearts, and rewired our minds (1st ed.). Little Brown and Company.
  • Hjorungdal, R.-M., Sanfilippo, F., Osen, O. L., Rutle, A., & Bye, R. T. (2016). A game-based learning framework for controlling brain-actuated wheelchairs [Paper presentation]. Proceedings of the 30th European Conference on Modelling and Simulation (ECMS’16) (p. 10). https://doi.org/10.7148/2016-0554
  • Jeunet, C., Debener, S., Lotte, F., Mattout, J., Scherer, R., & Zich, C. (2018). Mind the traps: Design guidelines for rigorous BCI experiments. In C. S. Nam, A. Nijholt, & F. Lotte (Eds.), Brain–computer interfaces handbook (1st ed., pp. 1–22). Taylor & Francis.
  • Jiang, X., Bian, G.-B., & Tian, Z. (2019). Removal of artifacts from EEG signals: A review. Sensors, 19(5), 987. https://doi.org/10.3390/s19050987
  • Li, J., Liu, Y., Lu, Z., & Zhang, L. (2013). A competitive brain computer interface: Multi-person car racing system [Paper presentation]. 2013 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC) (pp. 2200–2203). IEEE. https://doi.org/10.1109/EMBC.2013.6609972
  • Jurcak, V., Tsuzuki, D., & Dan, I. (2007). 10/20, 10/10, and 10/5 systems revisited: Their validity as relative head-surface-based positioning systems. NeuroImage, 34(4), 1600–1611. https://doi.org/10.1016/j.neuroimage.2006.09.024
  • Kaplan, A. Y., Shishkin, S. L., Ganin, I. P., Basyul, I. A., & Zhigalov, A. Y. (2013). Adapting the p300-based brain–computer interface for gaming: A review. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 141–149. https://doi.org/10.1109/TCIAIG.2012.2237517
  • Käthner, I., Ruf, C. A., Pasqualotto, E., Braun, C., Birbaumer, N., & Halder, S. (2013). A portable auditory P300 brain-computer interface with directional cues. Clinical Neurophysiology, 124(2), 327–338. https://doi.org/10.1016/j.clinph.2012.08.006
  • Keller, A. S., Leikauf, J. E., Holt-Gosselin, B., Staveland, B. R., & Williams, L. M. (2019). Paying attention to attention in depression. Translational Psychiatry, 9(1), 1–12. https://doi.org/10.1038/s41398-019-0616-1
  • Kerous, B., Skola, F., & Liarokapis, F. (2018). EEG-based BCI and video games: A progress report. Virtual Reality, 22(2), 119–135. https://doi.org/10.1007/s10055-017-0328-x
  • Koo, B., Lee, H.-G., Nam, Y., & Choi, S. (2015). Immersive BCI with SSVEP in VR head-mounted display [Paper presentation]. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). IEEE. https://doi.org/10.1109/embc.2015.7318558
  • Kosmyna, N., & Lécuyer, A. (2019). A conceptual space for EEG-based brain-computer interfaces. Plos One, 14(1), e0210145. https://doi.org/10.1371/journal.pone.0210145
  • Kos’myna, N., & Tarpin-Bernard, F. (2013). Evaluation and comparison of a multimodal combination of BCI paradigms and eye tracking with affordable consumer-grade hardware in a gaming context. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 150–154. https://doi.org/10.1109/TCIAIG.2012.2230003
  • Krippendorff, K. (2019). Content analysis: An introduction to its methodology. SAGE Publications, Inc. https://doi.org/10.4135/9781071878781
  • Kuba, M., Kubová, Z., Kremláček, J., & Langrová, J. (2007). Motion-onset VEPs: Characteristics, methods, and diagnostic use. Vision Research, 47(2), 189–202. https://doi.org/10.1016/j.visres.2006.09.020
  • Kwasnik, B. (1999). The role of classification in knowledge representation and discovery. Library Trends, 48(1), 22–47.
  • Laamarti, F., Eid, M., & Saddik, A. E. (2014). An overview of serious games. International Journal of Computer Games Technology, 2014(1), 1–15. https://doi.org/10.1155/2014/358152
  • Ladouce, S., Darmet, L., Tresols, J. J. T., Velut, S., Ferraro, G., & Dehais, F. (2022). Improving user experience of SSVEP BCI through low amplitude depth and high frequency stimuli design. Scientific Reports, 12(1), 1–12. https://doi.org/10.1038/s41598-022-12733-0
  • Lalor, E. C., Kelly, S. P., Finucane, C., Burke, R., Smith, R., Reilly, R. B., & McDarby, G. (2005). Steady-state VEP-based brain-computer interface control in an immersive 3D gaming environment. EURASIP Journal on Advances in Signal Processing, 2005(19), 3156–3164. https://doi.org/10.1155/ASP.2005.3156
  • Landau, O., Puzis, R., & Nissim, N. (2021). Mind your mind: EEG-based brain-computer interfaces and their security in cyber space. ACM Computing Surveys, 53(1), 1–38. https://doi.org/10.1145/3372043
  • Lebedev, M. A., & Nicolelis, M. A. L. (2017). Brain-machine interfaces: From basic science to neuroprostheses and neurorehabilitation. Physiological Reviews, 97(2), 767–837. https://doi.org/10.1152/physrev.00027.2016
  • Leite, H. M. D. A., Carvalho, S. N. D., Costa, T. B. D. S., Attux, R., Hornung, H. H., & Arantes, D. S. (2018). Analysis of user interaction with a brain-computer interface based on steady-state visually evoked potentials: Case study of a game. Computational Intelligence and Neuroscience, 2018, 1–10. https://doi.org/10.1155/2018/4920132
  • Li, M., Li, F., Pan, J., Zhang, D., Zhao, S., Li, J., & Wang, F. (2021). The MindGomoku: An online p300 BCI game based on Bayesian deep learning. Sensors, 21(5), 1613. https://doi.org/10.3390/s21051613
  • Liu, Y., Hou, X., Sourina, O., & Bazanova, O. (2016). Individual theta/beta based algorithm for neurofeedback games to improve cognitive abilities. In M. L. Gavrilova & C. K. Tan (Eds.), Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics). (Vol. 9570, pp. 57–73). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-662-49247-5_4
  • Maby, E., Perrin, M., Bertrand, O., Sanchez, G., & Mattout, J. (2012). BCI could make old two-player games even more fun: A proof of concept with “connect four. Advances in Human-Computer Interaction, 2012, 1–8. https://doi.org/10.1155/2012/124728
  • Marshall, D., Coyle, D., Wilson, S., & Callaghan, M. (2013). Games, gameplay, and BCI: The state of the art. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 82–99. https://doi.org/10.1109/TCIAIG.2013.2263555
  • Martisius, I., & Damasevicius, R. (2016). A prototype SSVEP based real time BCI gaming system. Computational Intelligence and Neuroscience, 2016(1), 1–15. https://doi.org/10.1155/2016/3861425
  • Mason, S. G., & Birch, G. E. (2003). A general framework for brain-computer interface design. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 11(1), 70–85. https://doi.org/10.1109/TNSRE.2003.810426
  • Mason, S. G., Jackson, M. M. M., & Birch, G. E. (2005). A general framework for characterizing studies of brain interface technology. Annals of Biomedical Engineering, 33(11), 1653–1670. https://doi.org/10.1007/s10439-005-7706-3
  • Mun, S., Park, M.-C., Park, S., & Whang, M. (2012). SSVEP and ERP measurement of cognitive fatigue caused by stereoscopic 3D. Neuroscience Letters, 525(2), 89–94. https://doi.org/10.1016/j.neulet.2012.07.049
  • Muñoz, J. E., Gonçalves, A., Vieira, T., Cró, D., Chisik, Y., & Bermúdez I Badia, S. (2016). Space connection–A multiplayer collaborative biofeedback game to promote empathy in teenagers: A feasibility study [Paper presentation]. Proceedings of the 3rd International Conference on Physiological Computing Systems (pp. 88–97). SCITEPRESS–Science and Technology Publications. https://doi.org/10.5220/0005948400880097
  • Nicolas-Alonso, L. F., & Gomez-Gil, J. (2012). Brain-computer interfaces, a review. Sensors, 12(2), 1211–1279. https://doi.org/10.3390/s120201211
  • Nijholt, A., & Gürkök, H. (2013). Multi-brain games: Cooperation and competition. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 8009 LNCS, pp. 652–661). https://doi.org/10.1007/978-3-642-39188-0_70
  • Obbink, M., Gürkök, H., Bos, D. P.-O., Hakvoort, G., Poel, M., & Nijholt, A. (2012). Social interaction in a cooperative brain-computer interface game. In Lecture notes of the institute for computer sciences, social informatics and telecommunications engineering (pp. 183–192). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-30214-5_20
  • Ortner, R., Lugo, Z., Noirhomme, Q., Laureys, S., & Guger, C. (2014). A tactile brain-computer interface for severely disabled patients [Paper presentation]. Proceedings of the 2014 IEEE Haptics Symposium (Haptics) (pp. 235–237). IEEE. https://doi.org/10.1109/HAPTICS.2014.6775460
  • Padfield, N., Camilleri, K., Camilleri, T., Fabri, S., & Bugeja, M. (2022). A comprehensive review of endogenous EEG-based BCIs for dynamic device control. Sensors, 22(15), 5802. https://doi.org/10.3390/s22155802
  • Pfurtscheller, G., Allison, B. Z., Brunner, C., Bauernfeind, G., Solis-Escalante, T., Scherer, R., Zander, T. O., Mueller-Putz, G., Neuper, C., & Birbaumer, N. (2010). The hybrid BCI. Frontiers in Neuroscience, 4, 30. https://doi.org/10.3389/fnpro.2010.00003
  • Prieto-Díaz, R. (1991). Implementing faceted classification for software reuse. Communications of the ACM, 34(5), 88–97. https://doi.org/10.1145/103167.103176
  • Prpa, M., & Pasquier, P. (2019). Brain-computer interfaces in contemporary art: A state of the art and taxonomy. In Brain art (pp. 65–115). Springer International Publishing. https://doi.org/10.1007/978-3-030-14323-7_3
  • Punsawad, Y., & Wongsawat, Y. (2017). Multi-command SSAEP-based BCI system with training sessions for SSVEP during an eye fatigue state. IEEJ Transactions on Electrical and Electronic Engineering, 12(S1), S72–S78. https://doi.org/10.1002/tee.22441
  • Putman, P., Verkuil, B., Arias-Garcia, E., Pantazi, I., & van Schie, C. (2014). EEG theta/beta ratio as a potential biomarker for attentional control and resilience against deleterious effects of stress on attention. Cognitive, Affective & Behavioral Neuroscience, 14(2), 782–791. https://doi.org/10.3758/s13415-013-0238-7
  • Putri, F., Luca, I. S., Pedro, J. A. G., Ding, H., & Vučković, A. (2022). Winners and losers in brain computer interface competitive gaming: Directional connectivity analysis. Journal of Neural Engineering, 19(4), 046037. https://doi.org/10.1088/1741-2552/ac8451
  • Ramadan, R. A., & Vasilakos, A. V. (2017). Brain computer interface: Control signals review. Neurocomputing, 223, 26–44. https://doi.org/10.1016/j.neucom.2016.10.024
  • Rezeika, A., Benda, M., Stawicki, P., Gembler, F., Saboor, A., & Volosyak, I. (2018). Brain–computer interface spellers: A review. Brain Sciences, 8(4), 57. https://doi.org/10.3390/brainsci8040057
  • Son, D., Rover, M., Blasio, F. M. D., Does, W., Barry, R. J., & Putman, P. (2019). Electroencephalography theta/beta ratio covaries with mind wandering and functional connectivity in the executive control network. Annals of the New York Academy of Sciences, 1452(1), 52–64. https://doi.org/10.1111/nyas.14180
  • Stegman, P., Crawford, C. S., Andujar, M., Nijholt, A., & Gilbert, J. E. (2020). Brain–computer interface software: A review and discussion. IEEE Transactions on Human-Machine Systems, 50(2), 101–115. https://doi.org/10.1109/THMS.2020.2968411
  • Stein, A., Yotam, Y., Puzis, R., Shani, G., & Taieb-Maimon, M. (2018). EEG-triggered dynamic difficulty adjustment for multiplayer games. Entertainment Computing, 25(December 2017), 14–25. https://doi.org/10.1016/j.entcom.2017.11.003
  • Strehl, U., Leins, U., Goth, G., Klinger, C., Hinterberger, T., & Birbaumer, N. (2006). Self-regulation of slow cortical potentials: A new treatment for children with attention-deficit/hyperactivity disorder. Pediatrics, 118(5), e1530–e1540. https://doi.org/10.1542/peds.2005-2478
  • Taherian, S., Selitskiy, D., Pau, J., & Claire Davies, T. (2017). Are we there yet? Evaluating commercial grade brain–computer interface for control of computer applications by individuals with cerebral palsy. Disability and Rehabilitation. Assistive Technology, 12(2), 165–174. https://doi.org/10.3109/17483107.2015.1111943
  • Tzitzikas, Y., Analyti, A., Spyratos, N., & Constantopoulos, P. (2007). An algebra for specifying valid compound terms in faceted taxonomies. Data & Knowledge Engineering, 62(1), 1–40. https://doi.org/10.1016/j.datak.2006.07.005
  • Usman, M., Britto, R., Börstler, J., & Mendes, E. (2017). Taxonomies in software engineering: A systematic mapping study and a revised taxonomy development method. Information and Software Technology, 85, 43–59. https://doi.org/10.1016/j.infsof.2017.01.006
  • van de Laar, B., Gürkök, H., Bos, D. P.-O., Poel, M., & Nijholt, A. (2013). Experiencing BCI control in a popular computer game. IEEE Transactions on Computational Intelligence and AI in Games, 5(2), 176–184. https://doi.org/10.1109/TCIAIG.2013.2253778
  • van Erp, J., Lotte, F., & Tangermann, M. (2012). Brain-computer interfaces: Beyond medical applications. Computer Magazine. 45(4), 26–34. https://doi.org/10.1109/MC.2012.107
  • van Vliet, M., Robben, A., Chumerin, N., Manyakov, N. V., Combaz, A., Hulle, M. M. V. (2012). Designing a brain-computer interface controlled video-game using consumer grade EEG hardware [Paper presentation]. Proceedings of the ISSNIP Biosignals and Biorobotics Conference (BRC’12) (pp. 1–6).
  • Vasiljevic, G. A. M., & de Miranda, L. C. (2020a). Brain–computer interface games based on consumer-grade EEG devices: A systematic literature review. International Journal of Human–Computer Interaction, 36(2), 105–142. https://doi.org/10.1080/10447318.2019.1612213
  • Vasiljevic, G. A. M., & de Miranda, L. C. (2020b). A general model for electroencephalography-controlled brain-computer interface games. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (Vol. 12250 LNCS, pp. 174–189). https://doi.org/10.1007/978-3-030-58802-1_13
  • Vasiljevic, G. A. M., & de Miranda, L. C. (2022). Comparing users’ performance and game experience between a competitive and collaborative brain-computer interface. Behaviour & Information Technology. Advance online publication. https://doi.org/10.1080/0144929X.2022.2152727
  • Vasiljevic, G. A. M., de Miranda, L. C., & de Menezes, B. C. (2018). Mental war: An attention-based single/multiplayer brain-computer interface game. In Lecture notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics).(Vol. 10960 LNCS, pp. 450–465). https://doi.org/10.1007/978-3-319-95162-1_31
  • Vasiljevic, G. A. M., de Miranda, L. C., & de Miranda, E. E. C. (2016). A case study of MasterMind Chess: Comparing mouse/keyboard interaction with Kinect-based gestural interface. Advances in Human-Computer Interaction, 2016(1), 1–10. https://doi.org/10.1155/2016/4602471
  • Wang, Y., Nakanishi, M., & Zhang, D. (2019). EEG-based brain-computer interfaces. In Advances in experimental medicine and biology (pp. 41–65). Springer Singapore. https://doi.org/10.1007/978-981-13-2050-7_2
  • Wang, Z., Yu, Y., Xu, M., Liu, Y., Yin, E., & Zhou, Z. (2019). Towards a hybrid BCI gaming paradigm based on motor imagery and SSVEP. International Journal of Human–Computer Interaction, 35(3), 197–205. https://doi.org/10.1080/10447318.2018.1445068
  • Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell, B., & Wesslén, A. (2012). Experimentation in software engineering (1st ed.). Springer.
  • Wolpaw, J. R., Birbaumer, N., McFarland, D. J., Pfurtscheller, G., & Vaughan, T. M. (2002). Brain-computer interfaces for communication and control. Clinical Neurophysiology, 113(6), 767–791. https://doi.org/10.1016/s1388-2457(02)00057-3
  • Wong, C. M., Tang, Q., Cruz, J. N., Wan, F. (2015). A multi-channel SSVEP-based BCI for computer games with analogue control [Paper presentation]. Proceedings of the IEEE International Conference on Computational Intelligence and Virtual Environments for Measurement Systems and Applications (CIVEMSA’15) (pp. 1–6).
  • Woźniak, M. P., Sikorski, P., Wróbel-Lachowska, M., Bartłomiejczyk, N., Dominiak, J., Grudzień, K., & Romanowski, A. (2021). Enhancing in-game immersion using BCI-controlled mechanics [Paper presentation]. Proceedings of the 27th ACM Symposium on Virtual Reality Software and Technology. ACM. https://doi.org/10.1145/3489849.3489862
  • Wu, C.-M., Chen, Y.-J., Zaeni, I. A. E., & Chen, S.-C. (2016). A new SSVEP based BCI application on the mobile robot in a maze game [Paper presentation]. 2016 International Conference on Advanced Materials for Science and Engineering (ICAMSE) (pp. 550–553). IEEE. https://doi.org/10.1109/ICAMSE.2016.7840197
  • Yin, R. K. (2009). Case study research design and methods (4th ed.). Sage Publications.
  • Zander, T. O., & Kothe, C. (2011). Towards passive brain-computer interfaces: Applying brain-computer interface technology to human-machine systems in general. Journal of Neural Engineering, 8(2), 025005. https://doi.org/10.1088/1741-2560/8/2/025005
  • Zander, T. O., Kothe, C., Jatzev, S., & Gaertner, M. (2010). Enhancing human-computer interaction with input from active and passive brain-computer interfaces. In Brain-computer interfaces (pp.181–199). https://doi.org/10.1007/978-1-84996-272-8_11
  • Zander, T. O., Kothe, C., Welke, S., & Roetting, M. (2009). Utilizing secondary input from passive brain-computer interfaces for enhancing human-machine interaction. In Foundations of augmented cognition. neuroergonomics and operational neuroscience (Vol. 5638 LNCS). https://doi.org/10.1007/978-3-642-02812-0_86
  • Zhang, H., Xie, J., Xiao, Y., Cui, G., Xu, G., Tao, Q., Gebrekidan, Y. Y., Yang, Y., Ren, Z., & Li, M. (2023). Steady-state auditory motion based potentials evoked by intermittent periodic virtual sound source and the effect of auditory noise on EEG enhancement. Hearing Research, 428, 108670. https://doi.org/10.1016/j.heares.2022.108670
  • Zhao, Q., Zhang, L., & Cichocki, A. (2009). EEG-based asynchronous BCI control of a car in 3d virtual reality environments. Chinese Science Bulletin, 54(1), 78–87. https://doi.org/10.1007/s11434-008-0547-3
  • Ziebell, P., Stümpfig, J., Eidel, M., Kleih, S. C., Kübler, A., Latoschik, M. E., & Halder, S. (2020). Stimulus modality influences session-to-session transfer of training effects in auditory and tactile streaming-based p300 brain–computer interfaces. Scientific Reports, 10(1), 11873. https://doi.org/10.1038/s41598-020-67887-6

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.