396
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Real-Time Workload Estimation Using Eye Tracking: A Bayesian Inference Approach

, , , , , , , & ORCID Icon show all
Received 02 Mar 2022, Accepted 13 Apr 2023, Published online: 04 May 2023

References

  • Ahern, S., & Beatty, J. (1979). Pupillary responses during information processing vary with scholastic aptitude test scores. Science, 205(4412), 1289–1292. https://doi.org/10.1126/science.472746
  • Ahlstrom, U., & Friedman-Berg, F. J. (2006). Using eye movement activity as a correlate of cognitive workload. International Journal of Industrial Ergonomics, 36(7), 623–636. https://doi.org/10.1016/j.ergon.2006.04.002
  • Backs, R. W., & Walrath, L. C. (1992). Eye movement and pupillary response indices of mental workload during visual search of symbolic displays. Applied Ergonomics, 23(4), 243–254. https://doi.org/10.1016/0003-6870(92)90152-l
  • Benedetto, S., Pedrotti, M., Minin, L., Baccino, T., Re, A., & Montanari, R. (2011). Driver workload and eye blink duration. Transportation Research Part F, 14(3), 199–208. https://doi.org/10.1016/j.trf.2010.12.001
  • Bodala, I. P., Ke, Y., Mir, H., Thakor, N. V., & Al-Nashash, H. (2014). Cognitive workload estimation due to vague visual stimuli using saccadic eye movements. In 2014 36th annual international conference of the IEEE engineering in medicine and biology society (pp. 2993–2996). https://doi.org/10.1109/EMBC.2014.6944252
  • Calinon, S. (2016). A tutorial on task-parameterized movement learning and retrieval. Intelligent Service Robotics, 9(1), 1–29. https://doi.org/10.1007/s11370-015-0187-9
  • Calinon, S., & Billard, A. (2005). Recognition and reproduction of gestures using a probabilistic framework combining PCA, ICA and HMM. In Proceedings of The 22nd international conference on machine learning (pp. 105–112). https://doi.org/10.1145/1102351.1102365
  • Carmody, M. A. (1994). Current issues in the measurement of military aircrew performance: A consideration of the relationship between available metrics and operational concerns. (Tech. Rep.). Naval Air Warfare Center.
  • Chang, C.-C., Boyle, L. N., Lee, J. D., & Jenness, J. (2017). Using tactile detection response tasks to assess in-vehicle voice control interactions. Transportation Research Part F, 51, 38–46. https://doi.org/10.1016/j.trf.2017.06.008
  • Chen, S., & Epps, J. (2013). Automatic classification of eye activity for cognitive load measurement with emotion interference. Computer Methods and Programs in Biomedicine, 110(2), 111–124. https://doi.org/10.1016/j.cmpb.2012.10.021
  • De Waard, D. (1996). The measurement of drivers. Mental workload [Unpublished doctoral dissertation]. University of Groningen.
  • Demberg, V. (2013). Pupillometry: The index of cognitive activity in a dual-task study. In Proceedings of the annual meeting of the cognitive science society (Vol. 35).
  • Di Nocera, F., Camilli, M., & Terenzi, M. (2007). A random glance at the flight deck: Pilots’ scanning strategies and the real-time assessment of mental workload. Journal of Cognitive Engineering and Decision Making, 1(3), 271–285. https://doi.org/10.1518/155534307X255627
  • Du, N., Huang, K. Y., & Yang, X. J. (2020). Not all information is equal: Effects of disclosing different types of likelihood information on trust, compliance and reliance, and task performance in human-automation teaming. Human Factors, 62(6), 987–1001. https://doi.org/10.1177/0018720819862916
  • Eggemeier, F., Biers, D., Wickens, C., Andre, A., Vreuls, D., Billman, E., & Schueren, J. (1990). Performance assessment and workload evaluation systems: Analysis of candidate measures (Tech. Rep.). Human Systems Division, Air Force Systems Command.
  • Esterwood, C., Yang, X. J., & Robert, L. P. (2021). Barriers to AV bus acceptance: A national survey and research Agenda. International Journal of Human–Computer Interaction, 37(15), 1391–1403. https://doi.org/10.1080/10447318.2021.1886485
  • Fridman, L., Reimer, B., Mehler, B., & Freeman, W. T. (2018). Cognitive load estimation in the wild. In Proceedings of The 2018 Chi conference on human factors in computing systems (p. 652). https://doi.org/10.1145/3173574.3174226
  • Gao, X., Yan, H., & Sun, H.-J. (2015). Modulation of microsaccade rate by task difficulty revealed through between-and within-trial comparisons. Journal of Vision, 15(3), 3–3. https://doi.org/10.1167/15.3.3
  • Goldberg, J. H., & Kotval, X. P. (1999). Computer interface evaluation using eye movements: Methods and constructs. International Journal of Industrial Ergonomics, 24(6), 631–645. https://doi.org/10.1016/S0169-8141(98)00068-7
  • Guo, Y., & Yang, X. J. (2021). Modeling and predicting trust dynamics in human–robot teaming: A Bayesian inference approach. International Journal of Social Robotics, 13(8), 1899–1909. https://doi.org/10.1007/s12369-020-00703-3
  • Halverson, T., Estepp, J., Christensen, J., & Monnin, J. (2012). Classifying workload with eye movements in a complex task. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 56(1), 168–172. https://doi.org/10.1177/1071181312561012
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. In Advances in psychology (Vol. 52, pp. 139–183). Elsevier.
  • He, X., Wang, L., Gao, X., Chen, Y. (2012). The eye activity measurement of mental workload based on basic flight task. In IEEE 10th international conference on industrial informatics (pp. 502–507).
  • Heard, J., Harriott, C. E., & Adams, J. A. (2018). A survey of workload assessment algorithms. IEEE Transactions on Human-Machine Systems, 48(5), 434–451. https://doi.org/10.1109/THMS.2017.2782483
  • Hicks, T. G., & Wierwille, W. W. (1979). Comparison of five mental workload assessment procedures in a moving-base driving simulator. Human Factors, 21(2), 129–143. https://doi.org/10.1177/001872087902100201
  • Hogervorst, M. A., Brouwer, A.-M., & Van Erp, J. B. (2014). Combining and comparing EEG, peripheral physiology and eye-related measures for the assessment of mental workload. Frontiers in Neuroscience, 8, 322. https://doi.org/10.3389/fnins.2014.00322
  • Jacob, R. J. K. (1995). Eye tracking in advanced interface design. In Virtual Environments and Advanced Interface Design (pp. 258–288). Oxford University Press.
  • Jacob, R. J., & Karn, K. S. (2003). Eye tracking in human-computer interaction and usability research: Ready to deliver the promises. In The mind’s eye (pp. 573–605). Elsevier.
  • Klingner, J., Kumar, R., & Hanrahan, P. (2008). Measuring the task-evoked pupillary response with a remote eye tracker. In Proceedings of the 2008 symposium on eye tracking research & applications (pp. 69–72). https://doi.org/10.1145/1344471.1344489
  • Kosch, T., Hassib, M., Buschek, D., & Schmidt, A. (2018). Look into my eyes: Using pupil dilation to estimate mental workload for task complexity adaptation. In Extended abstracts of the 2018 chi conference on human factors in computing systems (p. 1–6). Association for Computing Machinery.
  • Kosch, T., Hassib, M., Woźniak, P. W., Buschek, D., Alt, F. (2018). Your eyes tell: Leveraging smooth pursuit for assessing cognitive workload. In Proceedings of the 2018 Chi conference on human factors in computing systems (pp. 1–13).
  • Kun, A. L., Palinko, O., Medenica, Z., & Heeman, P. A. (2013). On the feasibility of using pupil diameter to estimate cognitive load changes for in-vehicle spoken dialogues. In Proceedings of the Annual Conference of the International Speech Communication Association, INTERSPEECH (pp. 3766–3770). https://doi.org/10.21437/Interspeech.2013-595
  • Lansdown, T. C., Brook-Carter, N., & Kersloot, T. (2004). Distraction from multiple in-vehicle secondary tasks: Vehicle performance and mental workload implications. Ergonomics, 47(1), 91–104. https://doi.org/10.1080/00140130310001629775
  • Leonard, J. J., Mindell, D. A., & Stayton, E. L. (2020). Autonomous vehicles, mobility, and employment policy: The roads ahead. MIT Task Force on Work of the Future Research Brief. Retrieved from https://workofthefuture.mit.edu/research-post/autonomous-vehicles-mobility-and-employment-policy-the-roads-ahead/
  • Li, W.-C., Chiu, F.-C., Wu, K.-J. (2012). The evaluation of pilots performance and mental workload by eye movement. In Proceeding of the 30th European association for aviation psychology conference.
  • Liang, Y., Reyes, M. L., & Lee, J. D. (2007). Real-time detection of driver cognitive distraction using support vector machines. IEEE Transactions on Intelligent Transportation Systems, 8(2), 340–350. https://doi.org/10.1109/TITS.2007.895298
  • Liu, K. (2019). Measuring and quantifying driver workload on limited access roads [Unpublished doctoral dissertation]. University of Michigan.
  • Lu, S., Zhang, M. Y., Ersal, T., & Yang, X. J. (2019). Workload management in teleoperation of unmanned ground vehicles: Effects of a delay compensation aid on human operators’ workload and teleoperation performance. International Journal of Human–Computer Interaction, 35(19), 1820–1830. https://doi.org/10.1080/10447318.2019.1574059
  • Luo, R., Hayne, R., & Berenson, D. (2018). Unsupervised early prediction of human reaching for human–robot collaboration in shared workspaces. Autonomous Robots, 42(3), 631–648. https://doi.org/10.1007/s10514-017-9655-8
  • Luo, R., Wang, Y., Weng, Y., Paul, V., Brudnak, M. J., Jayakumar, P., Reed, M., Stein, J. L., Ersal, T., & Yang, X. J. (2019). Toward real-time assessment of workload: A Bayesian inference approach. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 196–200. https://doi.org/10.1177/1071181319631293
  • Luo, R., Weng, Y., Wang, Y., Jayakumar, P., Brudnak, M. J., Paul, V., Desaraju, V. R., Stein, J. L., Ersal, T., & Yang, X. J. (2021). A workload adaptive haptic shared control scheme for semi-autonomous driving. Accident; Analysis and Prevention, 152, 105968. https://doi.org/10.1016/j.aap.2020.105968
  • Mallick, R., Slayback, D., Touryan, J., Ries, A. J., & Lance, B. J. (2016). The use of eye metrics to index cognitive workload in video games. In 2016 IEEE second workshop on eye tracking and visualization (etvis) (pp. 60–64). https://doi.org/10.1109/ETVIS.2016.7851168
  • Marquart, G., Cabrall, C., & de Winter, J. (2015). Review of eye-related measures of drivers’ mental workload. Procedia Manufacturing, 3, 2854–2861. https://doi.org/10.1016/j.promfg.2015.07.783
  • Marshall, S. P. (2000, July). Method and apparatus for eye tracking and monitoring pupil dilation to evaluate cognitive activity. EyeTracking, Inc.
  • Marshall, S. P. (2002). The index of cognitive activity: Measuring cognitive workload. In Proceedings of the IEEE 7th conference on human factors and power plants (pp. 7–7).
  • May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., & Brannan, J. R. (1990). Eye movement indices of mental workload. Acta Psychologica, 75(1), 75–89. https://doi.org/10.1016/0001-6918(90)90067-p
  • Menekse Dalveren, G. G., & Cagiltay, N. E. (2018). Insights from surgeons’ eye-movement data in a virtual simulation surgical training environment: Effect of experience level and hand conditions. Behaviour & Information Technology, 37(5), 517–537. https://doi.org/10.1080/0144929X.2018.1460399
  • Miller, E. E., Boyle, L. N., Jenness, J. W., & Lee, J. D. (2018). Voice control tasks on cognitive workload and driving performance: Implications of modality, difficulty, and duration. Transportation Research Record, 2672(37), 84–93. https://doi.org/10.1177/0361198118797483
  • Moacdieh, N. M., Devlin, S. P., Jundi, H., & Riggs, S. L. (2020). Effects of workload and workload transitions on attention allocation in a dual-task environment: Evidence from eye tracking metrics. Journal of Cognitive Engineering and Decision Making, 14(2), 132–151. https://doi.org/10.1177/1555343419892184
  • Owen, A. M., McMillan, K. M., Laird, A. R., & Bullmore, E. (2005). N-back working memory paradigm: A meta-analysis of normative functional neuroimaging studies. Human Brain Mapping, 25(1), 46–59. https://doi.org/10.1002/hbm.20131
  • Palinko, O., & Kun, A. (2011). Exploring the influence of light and cognitive load on pupil diameter in driving simulator studies.
  • Palinko, O., Kun, A. L., Shyrokov, A., & Heeman, P. (2010). Estimating cognitive load using remote eye tracking in a driving simulator. In Proceedings of the 2010 symposium on eye-tracking research & applications (pp. 141–144). https://doi.org/10.1145/1743666.1743701
  • Rayner, K. (1995). Eye movements and cognitive processes in reading, visual search, and scene perception. In Studies in visual information processing (Vol. 6, pp. 3–22). Elsevier.
  • Rayner, K. (2009). The 35th sir frederick bartlett lecture: Eye movements and attention in reading, scene perception, and visual search. Quarterly Journal of Experimental Psychology, 62(8), 1457–1506. https://doi.org/10.1080/17470210902816461
  • Rayner, K., & Morris, R. K. (1990). Do eye movements reflect higher order processes in reading? In From eye to mind: Information acquisition in perception, search, and reading (pp. 179–190). North-Holland.
  • Recarte, M. A., & Nunes, L. M. (2000). Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology. Applied, 6(1), 31–43. https://doi.org/10.1037//1076-898x.6.1.31
  • Recarte, M. A., & Nunes, L. M. (2003). Mental workload while driving: Effects on visual search, discrimination, and decision making. Journal of Experimental Psychology. Applied, 9(2), 119–137. https://doi.org/10.1037/1076-898x.9.2.119
  • Recarte, M. Á., Pérez, E., Conchillo, Á., & Nunes, L. M. (2008). Mental workload and visual impairment: Differences between pupil, blink, and subjective rating. The Spanish Journal of Psychology, 11(2), 374–385. https://doi.org/10.1017/S1138741600004406
  • Reimer, B. (2009). Impact of cognitive task complexity on drivers’ visual tunneling. Transportation Research Record, 2138(1), 13–19. https://doi.org/10.3141/2138-03
  • Rerhaye, L., Blaser, T., & Alexander, T. (2018). Evaluation of the index of cognitive activity (ICA) as an instrument to measure cognitive workload under differing light conditions. In Congress of the international ergonomics association (pp. 350–359).
  • Robinson, G. H. (1979). Dynamics of the eye and head during movement between displays: A qualitative and quantitative guide for designers. Human Factors, 21(3), 343–352. https://doi.org/10.1177/001872087902100309
  • Rozo, L., Silverio, J., Calinon, S., & Caldwell, D. G. (2016). Learning controllers for reactive and proactive behaviors in human–robot collaboration. Frontiers in Robotics and AI, 3, 30. https://doi.org/10.3389/frobt.2016.00030
  • Salvucci, D. D., & Goldberg, J. H. (2000). Identifying fixations and saccades in eye-tracking protocols. In Proceedings of The 2000 symposium on eye tracking research & applications (pp. 71–78). https://doi.org/10.1145/355017.355028
  • Schwarz, G. (1978). Estimating the dimension of a model. The Annals of Statistics, 6(2), 136. https://doi.org/10.1214/aos/1176344136
  • Skaramagkas, V., Giannakakis, G., Ktistakis, E., Manousos, D., Karatzanis, I., Tachos, N. S., Tripoliti, E., Marias, K., Fotiadis, D. I., & Tsiknakis, M. (2023). Review of eye tracking metrics involved in emotional and cognitive processes. IEEE Reviews in Biomedical Engineering, 16, 260–277. https://doi.org/10.1109/RBME.2021.3066072
  • Skaramagkas, V., Ktistakis, E., Manousos, D., Tachos, N. S., Kazantzaki, E., Tripoliti, E. E., Fotiadis, D. I. Tsiknakis, M. (2021). Cognitive workload level estimation based on eye tracking: A machine learning approach. In 2021 IEEE 21st International Conference on Bioinformatics and Bioengineering (BIBE) (pp. 1–5). https://doi.org/10.1109/BIBE52308.2021.9635166
  • Sun, Z., Li, B., Duan, F., Jia, H., Wang, S., Liu, Y., Cichocki, A., Caiafa, C. F., & Sole-Casals, J. (2021). Wlnet: Towards an approach for robust workload estimation based on shallow neural networks. IEEE Access. 9, 3165–3173. https://doi.org/10.1109/ACCESS.2020.3044732
  • Tobii Pro, A. B. (2014). Tobii pro lab. Computer software. Danderyd. Retrieved from http://www.tobiipro.com/
  • Tsai, Y.-F., Viirre, E., Strychacz, C., Chase, B., & Jung, T.-P. (2007). Task performance and eye activity: Predicting behavior relating to cognitive workload. Aviation, Space, and Environmental Medicine, 78(5 Suppl), B176–B185.
  • van der Wel, P., & van Steenbergen, H. (2018). Pupil dilation as an index of effort in cognitive control tasks: A review. Psychonomic Bulletin & Review, 25(6), 2005–2015. https://doi.org/10.3758/s13423-018-1432-y
  • Van Orden, K. F., Limbert, W., Makeig, S., & Jung, T.-P. (2001). Eye activity correlates of workload during a visuospatial memory task. Human Factors, 43(1), 111–121. https://doi.org/10.1518/001872001775992570
  • Vogels, J., Demberg, V., & Kray, J. (2018). The index of cognitive activity as a measure of cognitive processing load in dual task settings. Frontiers in Psychology, 9, 2276. https://doi.org/10.3389/fpsyg.2018.02276
  • Wang, J., Olson, E. (2016, October). AprilTag 2: Efficient and robust fiducial detection. In Proceedings of the IEEE/RSJ international conference on Intelligent Robots and Systems (IROS).
  • Weng, Y., Luo, R., Jayakumar, P., Brudnak, M. J., Paul, V., Desaraju, V. R., Stein, J. L., Yang, X. J., & Ersal, T. (2020). Design and evaluation of a workload-adaptive haptic shared control framework for semi-autonomous driving. In 2020 American Control Conference (ACC) (pp. 4369–4374). https://doi.org/10.23919/ACC45564.2020.9147482
  • Wu, T.-F., Lin, C.-J., & Weng, R. C. (2004). Probability estimates for multi-class classification by pairwise coupling. Journal of Machine Learning Research, 5(Aug), 975–1005.
  • Yang, X. J., Unhelkar, V. V., Li, K., & Shah, J. A. (2017). Evaluating effects of user experience and system transparency on trust in automation. In 2017 12th ACM/IEEE international conference on human-robot interaction (Hri) (pp. 408–416). https://doi.org/10.1145/2909824.3020230
  • Yang, Y., McDonald, M., & Zheng, P. (2012). Can drivers’ eye movements be used to monitor their performance? a case study. IET Intelligent Transport Systems, 6(4), 444–452. https://doi.org/10.1049/iet-its.2012.0008
  • Yokoyama, H., Eihata, K., Muramatsu, J., & Fujiwara, Y. (2018). Prediction of driver’s workload from slow fluctuations of pupil diameter. In 2018 21st international conference on intelligent transportation systems (ITSC) (pp. 1775–1780). https://doi.org/10.1109/ITSC.2018.8569279
  • Zhang, Q., Yang, X. J., & Robert, L. P. (2022). Individual differences and expectations of automated vehicles. International Journal of Human–Computer Interaction, 38(9), 825–836. https://doi.org/10.1080/10447318.2021.1970431
  • Zhang, Y., Owechko, Y., & Zhang, J. (2008). Learning-based driver workload estimation. In Computational intelligence in automotive applications (pp. 1–17). Springer.
  • Zhou, F., Yang, X. J., & de Winter, J. C. F. (2022). Using eye-tracking data to predict situation awareness in real time during takeover transitions in conditionally automated driving. IEEE Transactions on Intelligent Transportation Systems, 23(3), 2284–2295. https://doi.org/10.1109/TITS.2021.3069776

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.