304
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Dual-Gain Mode of Head-Gaze Interaction Improves the Efficiency of Object Positioning in a 3D Virtual Environment

, , & ORCID Icon
Pages 2067-2082 | Received 28 Nov 2022, Accepted 06 Jun 2023, Published online: 04 Jul 2023

References

  • Barteit, S., Lanfermann, L., Bärnighausen, T., Neuhann, F., & Beiersmann, C. (2021). Augmented, mixed, and virtual reality-based head-mounted devices for medical education: Systematic review. JMIR Serious Games, 9(3), e29080. https://doi.org/10.2196/29080
  • Bates, R., & Istance, H. O. (2003). Why are eye mice unpopular? A detailed comparison of head and eye controlled assistive technology pointing devices. Universal Access in the Information Society, 2(3), 280–290. https://doi.org/10.1007/s10209-003-0053-y
  • Blattgerste, J., Renner, P., & Pfeiffer, T. (2018). Advantages of eye-gaze over head-gaze-based selection in virtual and augmented reality under varying field of views. In Proceedings of the Workshop on Communication by Gaze Interaction (Article 1, pp. 1–9). Association for Computing Machinery. https://doi.org/10.1145/3206343.3206349
  • Casallas, J. S., Oliver, J. H., Kelly, J. W., Merienne, F., & Garbaya, S. (2014). Using relative head and hand-target features to predict intention in 3D moving-target selection. Proceedings of the 2014 IEEE Virtual Reality (VR) (pp. 51–56). IEEE. https://doi.org/10.1109/VR.2014.6802050
  • Casiez, G., Vogel, D., Balakrishnan, R., & Cockburn, A. (2008). The impact of control-display gain on user performance in pointing tasks. Human-Computer Interaction, 23(3), 215–250. https://doi.org/10.1080/07370020802278163
  • Chang, E., Kim, H. T., & Yoo, B. (2020). Virtual reality sickness: A review of causes and measurements. International Journal of Human–Computer Interaction, 36(17), 1658–1682. https://doi.org/10.1080/10447318.2020.1778351
  • Chen, Y., Hoffmann, E. R., & Goonetilleke, R. S. (2015). Structure of hand/mouse movements. IEEE Transactions on Human-Machine Systems, 45(6), 790–798. https://doi.org/10.1109/THMS.2015.2430872
  • Chen, H.-J., Lin, C. J., & Lin, P.-H. (2019). Effects of control-display gain and postural control method on distal pointing performance. International Journal of Industrial Ergonomics, 72, 45–53. https://doi.org/10.1016/j.ergon.2019.04.004
  • Clark, L. D., Bhagat, A. B., & Riggs, S. L. (2020). Extending Fitts’ law in three-dimensional virtual environments with current low-cost virtual reality technology. International Journal of Human-Computer Studies, 139, 102413. https://doi.org/10.1016/j.ijhcs.2020.102413
  • Deng, C. L., Geng, P., Hu, Y. F., & Kuai, S. G. (2019). Beyond Fitts’s law: A three-phase model predicts movement time to position an object in an immersive 3D virtual environment. Human Factors, 61(6), 879–894. https://doi.org/10.1177/0018720819831517
  • Deng, C. L., Tian, C. Y., & Kuai, S. G. (2022). A combination of eye-gaze and head-gaze interactions improves efficiency and user experience in an object positioning task in virtual environments. Applied Ergonomics, 103, 103785. https://doi.org/10.1016/j.apergo.2022.103785
  • Duval, T., & Fleury, C. (2009). An asymmetric 2D pointer/3D ray for 3D interaction within collaborative virtual environments. In Proceedings of the 14th international Conference on 3D Web Technology (pp. 33–41). Association for Computing Machinery. https://doi.org/10.1145/1559764.1559769
  • Elliott, D., Helsen, W. F., & Chua, R. (2001). A century later: Woodworth’s (1899) two-component model of goal-directed aiming. Psychological Bulletin, 127(3), 342–357. https://doi.org/10.1037/0033-2909.127.3.342
  • Evans, D. G., Drew, R., & Blenkhorn, P. (2000). Controlling mouse pointer position using an infrared head-operated joystick. IEEE Transactions on Rehabilitation Engineering : A Publication of the IEEE Engineering in Medicine and Biology Society, 8(1), 107–117. https://doi.org/10.1109/86.830955
  • Freedman, E. G. (2008). Coordination of the eyes and head during visual orienting. Experimental Brain Research, 190(4), 369–387. https://doi.org/10.1007/s00221-008-1504-8
  • Frees, S., & Kessler, G. D. (2005). Precise and rapid interaction through scaled manipulation in immersive virtual environments. In IEEE Proceedings. VR 2005. Virtual Reality, 2005 (pp. 99–106). IEEE. https://doi.org/10.1109/VR.2005.1492759
  • Gao, Y., Gonzalez, V. A., & Yiu, T. W. (2019). The effectiveness of traditional tools and computer-aided technologies for health and safety training in the construction sector: A systematic review. Computers & Education, 138, 101–115. https://doi.org/10.1016/j.compedu.2019.05.003
  • Gibbs, C. (1962). Controller design: Interactions of controlling limbs, time-lags and gains in positional and velocity systems. Ergonomics, 5(2), 385–402. https://doi.org/10.1080/00140136208930602
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (Task Load Index): Results of empirical and theoretical research. Advances in Psychology, 52(C), 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Hock, P., Benedikter, S., Gugenheimer, J., & Rukzio, E. (2017). Carvr: Enabling in-car virtual reality entertainment. In Proceedings of the 2017 CHI Conference on Human Factors in Computing Systems (pp. 4034–4044). Association for Computing Machinery. https://doi.org/10.1145/3025453.3025665
  • Huang, W., & Roscoe, R. D. (2021). Head-mounted display-based virtual reality systems in engineering education: A review of recent research. Computer Applications in Engineering Education, 29(5), 1420–1435. https://doi.org/10.1002/cae.22393
  • Joshi, S., Hamilton, M., Warren, R., Faucett, D., Tian, W., Wang, Y., & Ma, J. (2021). Implementing Virtual Reality technology for safety training in the precast/prestressed concrete industry. Applied Ergonomics, 90, 103286. https://doi.org/10.1016/j.apergo.2020.103286
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Kim, H., Oh, S., Han, S. H., & Chung, M. K. (2019). Motion–display gain: A new control–display mapping reflecting natural human pointing gesture to enhance interaction with large displays at a distance. International Journal of Human–Computer Interaction, 35(2), 180–195. https://doi.org/10.1080/10447318.2018.1447422
  • Kodama, R., Koge, M., Taguchi, S., & Kajimoto, H. (2017). COMS-VR: Mobile virtual reality entertainment system using electric car and head-mounted display. In Proceedings of the 2017 IEEE symposium on 3D user interfaces (3DUI) (pp. 130–133). IEEE. https://doi.org/10.1109/3DUI.2017.7893329
  • Kota, S., & Young, J. G. (2019). Effects of control-display mapping and spatially dependent gain on supported free-hand gesture pointing performance. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 63(1), 391–395. https://doi.org/10.1177/1071181319631518
  • Krichenbauer, M., Yamamoto, G., Taketom, T., Sandor, C., & Kato, H. (2018). Augmented reality versus virtual reality for 3d object manipulation. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1038–1048. https://doi.org/10.1109/TVCG.2017.2658570
  • Kwon, S., Choi, E., & Chung, M. K. (2011). Effect of control-to-display gain and movement direction of information spaces on the usability of navigation on small touch-screen interfaces using tap-n-drag. International Journal of Industrial Ergonomics, 41(3), 322–330. https://doi.org/10.1016/j.ergon.2011.02.012
  • Kytö, M., Ens, B., Piumsomboon, T., Lee, G. A., & Billinghurst, M. (2018). Pinpointing: Precise head-and eye-based target selection for augmented reality. In Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Article 81, pp. 1–14). Association for Computing Machinery. https://doi.org/10.1145/3173574.3173655
  • Lee, B., Nancel, M., Kim, S., & Oulasvirta, A. (2020). AutoGain: Gain function adaptation with submovement efficiency optimization. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–12). Association for Computing Machinery. https://doi.org/10.1145/3313831.3376244
  • Lemasters, L., & Flach, J. (2015). Multi-gain control: Balancing demands for speed and precision. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 59(1), 771–775. https://doi.org/10.1177/1541931215591239
  • Li, J., Cho, I., & Wartell, Z. (2015). Evaluation of 3D virtual cursor offset techniques for navigation tasks in a multi-display virtual environment. In Proceedings of the 2015 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 59–66). https://doi.org/10.1109/3DUI.2015.7131727
  • Lin, C. J., Chen, H. J., & Choi, J. H. (2016). The postural and control-display gain effects of distal pointing on upper extremity fatigue. Ergonomics, 59(1), 73–84. https://doi.org/10.1080/00140139.2015.1055824
  • Lin, C. J., Ho, S. H., & Chen, Y. J. (2015). An investigation of pointing postures in a 3D stereoscopic environment. Applied Ergonomics, 48, 154–163. https://doi.org/10.1016/j.apergo.2014.12.001
  • Lin, M. L., Radwin, R. G., & Vanderheiden, G. C. (1992). Gain effects on performance using a head-controlled computer input device. Ergonomics, 35(2), 159–175. https://doi.org/10.1080/00140139208967804
  • Liu, L., van Liere, R., Nieuwenhuizen, C., & Martens, J.-B. (2009). Comparing aimed movements in the real world and in virtual reality. In Proceedings of the 2009 IEEE Virtual Reality Conference (pp. 219–222). IEEE. https://doi.org/10.1109/VR.2009.4811026
  • LoPresti, E., Brienza, D. M., Angelo, J., Gilbertson, L., & Sakai, J. (2000). Neck range of motion and use of computer head controls. In Proceedings of the fourth international ACM conference on Assistive technologies (pp. 121–128). https://doi.org/10.1145/354324.354352
  • Maas, M. J., & Hughes, J. M. (2020). Virtual, augmented and mixed reality in K–12 education: A review of the literature. Technology, Pedagogy and Education, 29(2), 231–249. https://doi.org/10.1080/1475939X.2020.1737210
  • National Aeronautics and Space Administration (NASA) (2020). NASA TLX task load index. NASA. https://humansystems.arc.nasa.gov/groups/tlx/
  • Pang, Y. H., Hoffmann, E. R., & Goonetilleke, R. S. (2019). Effects of gain and index of difficulty on mouse movement time and Fitts’ law. IEEE Transactions on Human-Machine Systems, 49(6), 684–691. https://doi.org/10.1109/THMS.2019.2931743
  • Pastel, R. (2008). The difficulty of centering circular discs. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 52(19), 1312–1316. https://doi.org/10.1177/154193120805201902
  • Pastel, R. (2009). Investigating the difficulty of one degree of freedom positioning: Associating movement phases with regions. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 53(15), 965–969. https://doi.org/10.1177/154193120905301506
  • Pathmanathan, N., Becher, M., Rodrigues, N., Reina, G., Ertl, T., Weiskopf, D., & Sedlmair, M. (2020). Eye vs. head: Comparing gaze methods for interaction in augmented reality. In Proceedings of the ACM Symposium on Eye Tracking Research and Applications (Article 50, pp. 1–5). Association for Computing Machinery. https://doi.org/10.1145/3379156.3391829
  • Petford, J., Nacenta, M. A., & Gutwin, C. (2018). Pointing all around you: Selection performance of mouse and ray-cast pointing in full-coverage displays. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems (Article 533, pp. 1–14). Association for Computing Machinery. https://doi.org/10.1145/3173574.3174107
  • Poupyrev, I., Billinghurst, M., Weghorst, S., & Ichikawa, T. (1996). The go-go interaction technique: Non-linear mapping for direct manipulation in VR. In Proceedings of the 9th annual ACM Symposium on User Interface Software and Technology (pp. 79–80). Association for Computing Machinery. https://doi.org/10.1145/237091.237102
  • Poupyrev, I., Weghorst, S., Billinghurst, M., & Ichikawa, T. (1997). A framework and testbed for studying manipulation techniques for immersive VR. In Proceedings of the ACM Symposium on Virtual Reality Software and Technology (pp. 21–28). Association for Computing Machinery. https://doi.org/10.1145/261135.261141
  • Qian, Y. Y., & Teather, R. J. (2017). The eyes don’t have it: An empirical comparison of head-based and eye-based selection in virtual reality. In Proceedings of the 5th Symposium on Spatial User Interaction (pp. 91–98). Association for Computing Machinery. https://doi.org/10.1145/3131277.3132182
  • Rey-Becerra, E., Barrero, L. H., Ellegast, R., & Kluge, A. (2021). The effectiveness of virtual safety training in work at heights: A literature review. Applied Ergonomics, 94, 103419. https://doi.org/10.1016/j.apergo.2021.103419
  • Schaab, J. A., Radwin, R. G., Vanderheiden, G. C., & Hansen, P. K. (1996). A comparison of two control-display gain measures for head-controlled computer input devices. Human Factors, 38(3), 390–403. https://doi.org/10.1518/001872096778702042
  • Sutter, C., Müsseler, J., & Bardos, L. (2011). Effects of sensorimotor transformations with graphical input devices. Behaviour & Information Technology, 30(3), 415–424. https://doi.org/10.1080/01449291003660349
  • Tao, D., Zeng, J., Liu, K., & Qu, X. (2021). Effects of control-to-display gain and operation precision requirement on touchscreen operations in vibration environments. Applied Ergonomics, 91, 103293. https://doi.org/10.1016/j.apergo.2020.103293
  • Teather, R. J., & Stuerzlinger, W. (2007). Guidelines for 3D positioning techniques [Paper presentation]. Proceedings of the 2007 conference on Future Play, 61–68. https://doi.org/10.1145/1328202.1328214
  • Triantafyllidis, E., & Li, Z. (2021). The challenges in modeling human performance in 3d space with Fitts’ law. In Extended Abstracts of the 2021 CHI Conference on Human Factors in Computing Systems (Article 56, pp. 1–9). Association for Computing Machinery. https://doi.org/10.1145/3411763.3443442
  • van Doorn, R. R. A., & Unema, P. (2005). Effects of adaptation to altered display gain on the control of single aimed movements. Motor Control, 9(1), 3–22. https://doi.org/10.1123/mcj.9.1.3
  • van Doorn, R. R. A., Unema, P. J. A., & Hendriks, E. J. (2005). The locus of adaptation to altered gain in aimed movements. Human Movement Science, 24(1), 31–53. https://doi.org/10.1016/j.humov.2005.03.001
  • Williams, M. R., & Kirsch, R. F. (2016). Case study: Head orientation and neck electromyography for cursor control in persons with high cervical tetraplegia. Journal of Rehabilitation Research and Development, 53(4), 519–530. https://doi.org/10.1682/JRRD.2014.10.0244
  • Woodworth, R. S. (1899). Accuracy of voluntary movement. The Psychological Review: Monograph Supplements, 3(3), i–114. https://doi.org/10.1037/h0092992
  • Zhang, F., Mizobuchi, S., Zhou, W., Khan, T. A., Li, W., & Lank, E. (2021). Leveraging CD gain for precise barehand video timeline browsing on smart displays. In C. Ardito, R. Lanzilotti, A. Malizia, H. Petrie, A. Piccinno, G. Desolda, & K. Inkpen (Eds.), Human-Computer Interaction – INTERACT 2021 (pp. 72–91). Springer. https://doi.org/10.1007/978-3-030-85610-6_5
  • Zhou, C., Han, M., Liang, Q., Hu, Y. F., & Kuai, S. G. (2019). A social interaction field model accurately identifies static and dynamic social groupings. Nature Human Behaviour, 3(8), 847–855. https://doi.org/10.1038/s41562-019-0618-2
  • Zhou, C., Miao, M.-C., Chen, X.-R., Hu, Y.-F., Chang, Q., Yan, M.-Y., & Kuai, S.-G. (2022). Human-behaviour-based social locomotion model improves the humanization of social robots. Nature Machine Intelligence, 4(11), 1040–1052. https://doi.org/10.1038/s42256-022-00542-z
  • Zhou, Q., Fitzmaurice, G., & Anderson, F. (2022). In-depth mouse: Integrating desktop mouse into virtual reality. In Proceedings of the CHI Conference on Human Factors in Computing Systems (Article 354, pp. 1–17). Association for Computing Machinery. https://doi.org/10.1145/3491102.3501884

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.