552
Views
1
CrossRef citations to date
0
Altmetric
Research Article

The Effects of Degrees of Freedom and Field of View on Motion Sickness in a Virtual Reality Context

ORCID Icon & ORCID Icon
Received 11 Jun 2023, Accepted 24 Jul 2023, Published online: 06 Aug 2023

References

  • Akiduki, H., Nishiike, S., Watanabe, H., Matsuoka, K., Kubo, T., & Takeda, N. (2003). Visual-vestibular conflict induced by virtual reality in humans. Neuroscience Letters, 340(3), 197–200. https://doi.org/10.1016/S0304-3940(03)00098-3
  • Al-Ansi, A. M., Jaboob, M., Garad, A., & Al-Ansi, A. (2023). Analyzing augmented reality (AR) and virtual reality (VR) recent development in education. Social Sciences & Humanities Open, 8(1), 100532. https://doi.org/10.1016/j.ssaho.2023.100532
  • Appelhans, B. M., & Luecken, L. J. (2008). Heart rate variability and pain: Associations of two interrelated homeostatic processes. Biological Psychology, 77(2), 174–182. https://doi.org/10.1016/j.biopsycho.2007.10.004
  • Arlt, J., Jahn, H., Kellner, M., Ströhle, A., Yassouridis, A., & Wiedemann, K. (2003). Modulation of sympathetic activity by corticotropin-releasing hormone and atrial natriuretic peptide. Neuropeptides, 37(6), 362–368. https://doi.org/10.1016/j.npep.2003.09.006
  • Atsikpasi, P., & Fokides, E. (2022). A scoping review of the educational uses of 6DoF HMDs. Virtual Reality, 26(1), 205–222. https://doi.org/10.1007/s10055-021-00556-9
  • Badilini, F., Maison‐blanche, P. I. E. R. R. E., & Coumel, P. (1998). Heart rate variability in passive tilt test: Comparative evaluation of autoregressive and FFT spectral analyses. Pacing and Clinical Electrophysiology : PACE, 21(5), 1122–1132. https://doi.org/10.1111/j.1540-8159.1998.tb00159.x
  • Bahit, M., Wibirama, S., Nugroho, H. A., Wijayanto, T., & Winadi, M. N. (2016, October). Investigation of visual attention in day-night driving simulator during cybersickness occurrence. In 2016 8th International Conference on Information Technology and Electrical Engineering (ICITEE) (pp. 1–4). IEEE. https://doi.org/10.1109/ICITEED.2016.7863260
  • Beckers, F., Verheyden, B., Ramaekers, D., Swynghedauw, B., & Aubert, A. E. (2006). Effects of autonomic blockade on non‐linear cardiovascular variability indices in rats. Clinical and Experimental Pharmacology & Physiology, 33(5–6), 431–439. https://doi.org/10.1111/j.1440-1681.2006.04384.x
  • Bianchi, A. M., Mainardi, L., Petrucci, E., Signorini, M. G., Mainardi, M., & Cerutti, S. (1993). Time-variant power spectrum analysis for the detection of transient episodes in HRV signal. IEEE Transactions on Bio-Medical Engineering, 40(2), 136–144. https://doi.org/10.1109/10.212067
  • Bin Karjanto, J., Md. Yusof, N., Wang, C., Delbressine, F., Rauterberg, M., Terken, J., & Martini, A. (2017, September). Situation awareness and motion sickness in automated vehicle driving experience: A preliminary study of peripheral visual information. In Proceedings of the 9th International Conference on Automotive User Interfaces and Interactive Vehicular Applications Adjunct (pp. 57–61). ACM. https://doi.org/10.1145/3131726.3131745
  • Bowman, D. A., & McMahan, R. P. (2007). Virtual reality: How much immersion is enough? Computer Magazine. 40(7), 36–43. https://doi.org/10.1109/MC.2007.257
  • Camm, A., Malik, M., Bigger, J., Breithardt, G., Cerutti, S., Cohen, R., Coumel, P., Fallen, E., Kennedy, H., & Kleiger, R. (1996). Heart rate variability: Standards of measurement, physiological interpretation, and clinical use. Circulation, 93, 1043–1065. https://doi.org/10.1161/01.CIR.93.5.1043
  • Casu, M., Cappi, C., Patrone, V., Repetto, E., Giusti, M., Minuto, F., & Murialdo, G. (2005). Sympatho-vagal control of heart rate variability in patients treated with suppressive doses of L-thyroxine for thyroid cancer. European Journal of Endocrinology, 152(6), 819–824. https://doi.org/10.1530/eje.1.01918
  • Chandrasekera, T., Fernando, K., & Puig, L. (2019). Effect of degrees of freedom on the sense of presence generated by virtual reality (VR) head-mounted display systems: A case study on the use of VR in early design studios. Journal of Educational Technology Systems, 47(4), 513–522. https://doi.org/10.1177/0047239518824862
  • Chang, E., Kim, H. T., & Yoo, B. (2020). Virtual reality sickness: A review of causes and measurements. International Journal of Human–Computer Interaction, 36(17), 1658–1682. https://doi.org/10.1080/10447318.2020.1778351
  • Chardonnet, J. R., Mirzaei, M. A., & Mérienne, F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human–Computer Interaction, 33(10), 771–785. https://doi.org/10.1080/10447318.2017.1286767
  • Chemla, D., Young, J., Badilini, F., Maison-Blanche, P., Affres, H., Lecarpentier, Y., & Chanson, P. (2005). Comparison of fast Fourier transform and autoregressive spectral analysis for the study of heart rate variability in diabetic patients. International Journal of Cardiology, 104(3), 307–313. https://doi.org/10.1016/j.ijcard.2004.12.018
  • Chen, J. L., Chiu, H. W., Tseng, Y. J., & Chu, W. C. (2006). Hyperthyroidism is characterized by both increased sympathetic and decreased vagal modulation of heart rate: Evidence from spectral analysis of heart rate variability. Clinical Endocrinology, 64(6), 611–616. https://doi.org/10.1111/j.1365-2265.2006.02514.x
  • Cho, H. J., & Kim, G. J. (2022). RideVR: Reducing sickness for in-car virtual reality by mixed-in presentation of motion flow information. IEEE Access, 10, 34003–34011. https://doi.org/10.1109/ACCESS.2022.3162221
  • Clifton, J., & Palmisano, S. (2020). Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 24(3), 453–468. https://doi.org/10.1007/s10055-019-00407-8
  • Cobb, S. V., Nichols, S., Ramsey, A., & Wilson, J. R. (1999). Virtual reality-induced symptoms and effects (VRISE). Presence: Teleoperators and Virtual Environments, 8(2), 169–186. https://doi.org/10.1162/105474699566152
  • Del Cid, D. A., Larranaga, D., Leitao, M., Mosher, R. L., Berzenski, S. R., Gandhi, V., & Drew, S. A. (2021). Exploratory factor analysis and validity of the virtual reality symptom questionnaire and computer use survey. Ergonomics, 64(1), 69–77. https://doi.org/10.1080/00140139.2020.1820083
  • Dongas, R., & Grace, K. (2023). Designing to leverage presence in VR rhythm games. Multimodal Technologies and Interaction, 7(2), 18. https://doi.org/10.3390/mti7020018
  • Doweck, I., Gordon, C. R., Shlitner, A., Spitzer, O., Gonen, A., Binah, O., Melamed, Y., & Shupak, A. (1997). Alterations in R–R variability associated with experimental motion sickness. Journal of the Autonomic Nervous System, 67(1–2), 31–37. https://doi.org/10.1016/S0165-1838(97)00090-8
  • Duh, H. L., Lin, J. W., Kenyon, R. V., Parker, D. E., & Furness, T. A. (2001, March). Effects of field of view on balance in an immersive environment. In Proceedings IEEE Virtual Reality 2001 (pp. 235–240). IEEE. https://doi.org/10.1109/VR.2001.913791
  • Emery, W., & Camps, A. (2017). Optical imaging systems. In W. Emery & A. Camps (Eds.), Introduction to satellite remote sensing: Atmosphere, ocean, land and cryosphere applications (pp. 85–130). Elsevier. https://doi.org/10.1016/B978-0-12-809254-5.00003-8
  • Fernandes, A. S., & Feiner, S. K. (2016, March). Combating VR sickness through subtle dynamic field-of-view modification. In 2016 IEEE Symposium on 3D User Interfaces (3DUI), (pp. 201–210). IEEE. https://doi.org/10.1109/3DUI.2016.7460053
  • Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47(5), 507–516. https://doi.org/10.1016/S0361-9230(98)00091-4
  • Golding, J. F. (2006). Predicting individual differences in motion sickness susceptibility by questionnaire. Personality and Individual Differences, 41(2), 237–248. https://doi.org/10.1016/j.paid.2006.01.012
  • Gusev, D. A., Whittinghill, D. M., & Yong, J. (2016). A simulator to study the effects of color and color blindness on motion sickness in virtual reality using head-mounted displays. In Mobile and wireless technologies 2016 (pp. 197–204). Springer. https://doi.org/10.1007/978-981-10-1409-3_22
  • Holmes, S. R., & Griffin, M. J. (2001). Correlation between heart rate and the severity of motion sickness caused by optokinetic stimulation. Journal of Psychophysiology, 15(1), 35–42. https://doi.org/10.1027/0269-8803.15.1.35
  • Hutchins, C. W., Jr., & Kennedy, R. S. (1965). THE RELATIONSHIP BETWEEN PAST HISTORY OF MOTION SICKNESS AND ATTRITION FROM FLIGHT TRAINING. Naval School of Aviation Medicine Pensacola Fla.
  • Jang, K. M., Kwon, M., Nam, S. G., Kim, D., & Lim, H. K. (2022). Estimating objective (EEG) and subjective (SSQ) cybersickness in people with susceptibility to motion sickness. Applied Ergonomics, 102, 103731. https://doi.org/10.1016/j.apergo.2022.103731
  • Jansen, W., Laurijssen, D., Daems, W., & Steckel, J. (2019). Automatic calibration of a six-degrees-of-freedom pose estimation system. IEEE Sensors Journal, 19(19), 8824–8831. https://doi.org/10.1109/JSEN.2019.2921644
  • Jing, Z., Wang, D., & Zhang, Y. (2023). The effect of virtual reality game teaching technology on students’ immersion. International Journal of Emerging Technologies in Learning (iJET), 18(08), 183–195. https://doi.org/10.3991/ijet.v18i08.37825
  • Jost, T. A., Drewelow, G., Koziol, S., & Rylander, J. (2019). A quantitative method for evaluation of 6 degree of freedom virtual reality systems. Journal of Biomechanics, 97, 109379. https://doi.org/10.1016/j.jbiomech.2019.109379
  • Kato, M., Sakai, T., Yabe, K., Miyamura, M., & Soya, H. (2004). Gastric myoelectrical activity increases after moderate-intensity exercise with no meals under suppressed vagal nerve activity. The Japanese Journal of Physiology, 54(3), 221–228. https://doi.org/10.2170/jjphysiol.54.221
  • Kay, S. M., & Marple, S. L. (1981). Spectrum analysis—a modern perspective. Proceedings of the IEEE, 69(11), 1380–1419. https://doi.org/10.1109/PROC.1981.12184
  • Kazemi, R., & Lee, S. C. (2023). Human Factors/Ergonomics (HFE) evaluation in the virtual reality environment: A systematic review. International Journal of Human–Computer Interaction. Advance online publication. https://doi.org/10.1080/10447318.2023.2227835
  • Kennedy, R. S., Drexler, J., & Kennedy, R. C. (2010). Research in visually induced motion sickness. Applied Ergonomics, 41(4), 494–503. https://doi.org/10.1016/j.apergo.2009.11.006
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Keshavarz, B., Peck, K., Rezaei, S., & Taati, B. (2022). Detecting and predicting visually induced motion sickness with physiological measures in combination with machine learning techniques. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 176, 14–26. https://doi.org/10.1016/j.ijpsycho.2022.03.006
  • Kim, A., Lee, J. E., & Lee, K. M. (2022, October). An investigation on the relationship between cybersickness and heart rate variability when navigating a virtual environment. In 2022 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct) (pp. 794–797). IEEE.
  • Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018). Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied Ergonomics, 69, 66–73. https://doi.org/10.1016/j.apergo.2017.12.016
  • Kim, J., Kim, W., Ahn, S., Kim, J., & Lee, S. (2018, May). Virtual reality sickness predictor: Analysis of visual-vestibular conflict and VR contents. In 2018 Tenth International Conference on Quality of Multimedia Experience (QoMEX) (pp. 1–6). IEEE. https://doi.org/10.1109/QoMEX.2018.8463413
  • Kuppusamy, M., Kamaldeen, D., Pitani, R., Amaldas, J., Ramasamy, P., Shanmugam, P., & Vijayakumar, V. (2020). Effects of yoga breathing practice on heart rate variability in healthy adolescents: A randomized controlled trial. Integrative Medicine Research, 9(1), 28–32. https://doi.org/10.1016/j.imr.2020.01.006
  • Lee, J., Kim, M., & Kim, J. (2017). A study on immersion and VR sickness in walking interaction for immersive virtual reality applications. Symmetry, 9(5), 78. https://doi.org/10.3390/sym9050078
  • Li, Z. M. (2006). Functional degrees of freedom. Motor Control, 10(4), 301–310. https://doi.org/10.1123/mcj.10.4.301
  • Liao, C. Y., Tai, S. K., Chen, R. C., & Hendry, H. (2020). Using EEG and deep learning to predict motion sickness under wearing a virtual reality device. IEEE Access, 8, 126784–126796. https://doi.org/10.1109/ACCESS.2020.3008165
  • Lin, C. L., Jung, T. P., Chuang, S. W., Duann, J. R., Lin, C. T., & Chiu, T. W. (2013). Self-adjustments may account for the contradictory correlations between HRV and motion-sickness severity. International Journal of Psychophysiology : Official Journal of the International Organization of Psychophysiology, 87(1), 70–80. https://doi.org/10.1016/j.ijpsycho.2012.11.003
  • Lin, C. T., Chuang, S. W., Chen, Y. C., Ko, L. W., Liang, S. F., & Jung, T. P. (2007, August). EEG effects of motion sickness induced in a dynamic virtual reality environment. In 2007 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 3872–3875). IEEE. https://doi.org/10.1109/IEMBS.2007.4353178
  • Lin, C. T., Lin, C. L., Chiu, T. W., Duann, J. R., & Jung, T. P. (2011, August). Effect of respiratory modulation on relationship between heart rate variability and motion sickness. In 2011 Annual International Conference of the IEEE Engineering in Medicine and Biology Society (pp. 1921–1924). IEEE. https://doi.org/10.1109/IEMBS.2011.6090543
  • Lin, J. W., Duh, H. B. L., Parker, D. E., Abi-Rached, H., & Furness, T. A. (2002, March). Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Proceedings of the IEEE Virtual Reality 2002 (pp. 164–171). IEEE. https://doi.org/10.1109/VR.2002.996519
  • Lipponen, J. A., & Tarvainen, M. P. (2019). A robust algorithm for heart rate variability time series artefact correction using novel beat classification. Journal of Medical Engineering & Technology, 43(3), 173–181. https://doi.org/10.1080/03091902.2019.1640306
  • Madden, K. M., W. C., Levy, & J. R., Stratton. (2008). Aging affects the response of heart rate variability autonomic indices to atropine and isoproteronol. Clinical Medicine Insights. Geriatrics, 1, 17.
  • Malińska, M., Zużewicz, K., Bugajska, J., & Grabowski, A. (2015). Heart rate variability (HRV) during virtual reality immersion. International Journal of Occupational Safety and Ergonomics : JOSE, 21(1), 47–54. https://doi.org/10.1080/10803548.2015.1017964
  • Marple, S. L., Jr., & Carey, W. M. (1989). Digital spectral analysis with applications. The Journal of the Acoustical Society of America, 86(5), 2043–2043. https://doi.org/10.1121/1.398548
  • Money, K. E. (1970). Motion sickness. Physiological Reviews, 50(1), 1–39. https://doi.org/10.1152/physrev.1970.50.1.1
  • Murdin, L., Golding, J., & Bronstein, A. (2011). Managing motion sickness. BMJ (Clinical Research ed.), 343, d7430. https://doi.org/10.1136/bmj.d7430
  • Ng, A. K., Chan, L. K., & Lau, H. Y. (2020). A study of cybersickness and sensory conflict theory using a motion-coupled virtual reality system. Displays, 61, 101922. https://doi.org/10.1016/j.displa.2019.08.004
  • Nishiike, S., Okazaki, S., Watanabe, H., Akizuki, H., Imai, T., Uno, A., Kitahara, T., Horii, A., Takeda, N., & Inohara, H. (2013). The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans. The Journal of Medical Investigation : JMI, 60(3–4), 236–239. https://doi.org/10.2152/jmi.60.236
  • Ohyama, S., Nishiike, S., Watanabe, H., Matsuoka, K., Akizuki, H., Takeda, N., & Harada, T. (2007). Autonomic responses during motion sickness induced by virtual reality. Auris, Nasus, Larynx, 34(3), 303–306. https://doi.org/10.1016/j.anl.2007.01.002
  • Park, S., & Lee, G. (2020). Full-immersion virtual reality: Adverse effects related to static balance. Neuroscience Letters, 733, 134974. https://doi.org/10.1016/j.neulet.2020.134974
  • Park, S., Ha, J., & Kim, L. (2022). Effect of visually induced motion sickness from head-mounted display on cardiac activity. Sensors, 22(16), 6213. https://doi.org/10.3390/s22166213
  • Park, S., Won, M. J., Mun, S., Lee, E. C., & Whang, M. (2014). Does visual fatigue from 3D displays affect autonomic regulation and heart rhythm? International Journal of Psychophysiology, 92(1), 42–48. https://doi.org/10.1016/j.ijpsycho.2014.02.003
  • Peterson, S. M., Furuichi, E., & Ferris, D. P. (2018). Effects of virtual reality high heights exposure during beam-walking on physiological stress and cognitive loading. PloS One, 13(7), e0200306. https://doi.org/10.1371/journal.pone.0200306
  • Pichon, A., Roulaud, M., Antoine-Jonville, S., de Bisschop, C., & Denjean, A. (2006). Spectral analysis of heart rate variability: Interchangeability between autoregressive analysis and fast Fourier transform. Journal of Electrocardiology, 39(1), 31–37. https://doi.org/10.1016/j.jelectrocard.2005.08.001
  • Pouke, M., Tiiro, A., LaValle, S. M., & Ojala, T. (2018, March). Effects of visual realism and moving detail on cybersickness. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 665–666). IEEE. https://doi.org/10.1109/VR.2018.8446078
  • Previc, F. H. (1993). Do the organs of the labyrinth differentially influence the sympathetic and parasympathetic systems? Neuroscience and Biobehavioral Reviews, 17(4), 397–404. https://doi.org/10.1016/S0149-7634(05)80116-2
  • Pyun, K. R., Rogers, J. A., & Ko, S. H. (2022). Materials and devices for immersive virtual reality. Nature Reviews. Materials, 7(11), 841–843. https://doi.org/10.1038/s41578-022-00501-5
  • Ragan, E. D., Bowman, D. A., Kopper, R., Stinson, C., Scerbo, S., & McMahan, R. P. (2015). Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. IEEE Transactions on Visualization and Computer Graphics, 21(7), 794–807. https://doi.org/10.1109/TVCG.2015.2403312
  • Ranasinghe, N., Jain, P., Tolley, D., Karwita Tailan, S., Yen, C. C., & Do, E. Y. L. (2020, October). Exploring the use of olfactory stimuli towards reducing visually induced motion sickness in virtual reality. In Proceedings of the 2020 ACM Symposium on Spatial User Interaction (pp. 1–9). ACM. https://doi.org/10.1145/3385959.3418451
  • Riaz, W., Khan, Z. Y., Jawaid, A., & Shahid, S. (2021). Virtual reality (VR)-based environmental enrichment in older adults with mild cognitive impairment (MCI) and mild dementia. Brain Sciences, 11(8), 1103. https://doi.org/10.3390/brainsci11081103
  • Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews. Neuroscience, 6(4), 332–339. https://doi.org/10.1038/nrn1651
  • Sardar, S. K., Lim, C. H., Yoon, S. H., & Lee, S. C. (2023). Ergonomic risk assessment of manufacturing works in virtual reality context. International Journal of Human–Computer Interaction. Advance online publication. https://doi.org/10.1080/10447318.2023.2201558
  • Schober, P., Boer, C., & Schwarte, L. A. (2018). Correlation coefficients: Appropriate use and interpretation. Anesthesia and Analgesia, 126(5), 1763–1768. https://doi.org/10.1213/ANE.0000000000002864
  • Schwind, V., Knierim, P., Haas, N., & Henze, N. (2019, May). Using presence questionnaires in virtual reality. In Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems (pp. 1–12). ACM. https://doi.org/10.1145/3290605.3300590
  • Selvaraj, N., Jaryal, A., Santhosh, J., Deepak, K. K., & Anand, S. (2008). Assessment of heart rate variability derived from finger-tip photoplethysmography as compared to electrocardiography. Journal of Medical Engineering & Technology, 32(6), 479–484. https://doi.org/10.1080/03091900701781317
  • Setiowati, N. O., Wijayanto, T., & Trapsilawati, F. (2020). Identifying cybersickness when wearing a head-mounted display through heart rate variability data. IOP Conference Series: Materials Science and Engineering, 885(1), 012069. https://doi.org/10.1088/1757-899X/885/1/012069
  • Tarvainen, M. P., Niskanen, J. P., Lipponen, J. A., Ranta-Aho, P. O., & Karjalainen, P. A. (2014). Kubios HRV–heart rate variability analysis software. Computer Methods and Programs in Biomedicine, 113(1), 210–220. https://doi.org/10.1016/j.cmpb.2013.07.024
  • Teixeira, J., & Palmisano, S. (2021). Effects of dynamic field-of-view restriction on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 25(2), 433–445. https://doi.org/10.1007/s10055-020-00466-2
  • Treleaven, J., Battershill, J., Cole, D., Fadelli, C., Freestone, S., Lang, K., & Sarig-Bahat, H. (2015). Simulator sickness incidence and susceptibility during neck motion-controlled virtual reality tasks. Virtual Reality, 19(3–4), 267–275. https://doi.org/10.1007/s10055-015-0266-4
  • Widyanti, A., & Hafizhah, H. N. (2022). The influence of personality, sound, and content difficulty on virtual reality sickness. Virtual Reality, 26(2), 631–637. https://doi.org/10.1007/s10055-021-00525-2
  • Wu, F., & Suma Rosenberg, E. (2022, November). Adaptive field-of-view restriction: Limiting optical flow to mitigate cybersickness in virtual reality. In Proceedings of the 28th ACM Symposium on Virtual Reality Software and Technology (pp. 1–11). ACM. https://doi.org/10.1145/3562939.3565611
  • Yeo, S. S., Kwon, J. W., & Park, S. Y. (2022). EEG-based analysis of various sensory stimulation effects to reduce visually induced motion sickness in virtual reality. Scientific Reports, 12(1), 18043. https://doi.org/10.1038/s41598-022-21307-z
  • Yokota, Y., Aoki, M., Mizuta, K., Ito, Y., & Isu, N. (2005). Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta oto-laryngologica, 125(3), 280–285. https://doi.org/10.1080/00016480510003192
  • Zhang, L. L., Wang, J. Q., Qi, R. R., Pan, L. L., Li, M., & Cai, Y. L. (2016). Motion sickness: Current knowledge and recent advance. CNS Neuroscience & Therapeutics, 22(1), 15–24. https://doi.org/10.1111/cns.12468
  • Zhao, D., Yamada, H., Muto, T., Huang, H., Gong, W., & Xia, Y. (2002). 6 DOF presentation of realistic motion in operating a construction tele-robot system. In Proceedings of the JFPS international symposium on fluid power (Vol. 2002, No. 5–2, pp. 507–512). The Japan Fluid Power System Society. https://doi.org/10.5739/isfp.2002.507

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.