170
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Adaptive Training on Basic AR Interactions: Bi-Variate Metrics and Neuroergonomic Evaluation Paradigms

, , , , , & show all
Received 12 Jun 2023, Accepted 16 Aug 2023, Published online: 01 Sep 2023

References

  • Abujelala, M., Karthikeyan, R., Tyagi, O., Du, J., & Mehta, R. K. (2021). Brain activity-based metrics for assessing learning states in VR under stress among firefighters: An explorative machine learning approach in neuroergonomics. Brain Sciences, 11(7), 885. https://doi.org/10.3390/brainsci11070885
  • Albayrak, M. S., Öner, A., Atakli, I. M., & Ekenel, H. K. (2019). Personalized training in fast-food restaurants using augmented reality glasses [Paper presentation]. 2019 International Symposium on Educational Technology (ISET), In (pp. 129–133). https://doi.org/10.1109/ISET.2019.00035
  • Anderson, F., Grossman, T., Matejka, J., Fitzmaurice, G. (2013). Youmove: Enhancing movement training with an augmented reality mirror [Paper presentation]. Proceedings of the 26th Annual ACM Symposium on User Interface Software and Technology (pp. 311–320).
  • Argelaguet, F., & Andujar, C. (2009). Efficient 3d pointing selection in cluttered virtual environments. IEEE Computer Graphics and Applications, 29(6), 34–43. https://doi.org/10.1109/MCG.2009.117
  • Argelaguet, F., & Andujar, C. (2013). A survey of 3d object selection techniques for virtual environments. Computers & Graphics, 37(3), 121–136. https://doi.org/10.1016/j.cag.2012.12.003
  • Barsom, E. Z., Graafland, M., & Schijven, M. P. (2016). Systematic review on the effectiveness of augmented reality applications in medical training. Surgical Endoscopy, 30(10), 4174–4183. https://doi.org/10.1007/s00464-016-4800-6
  • Bates, D., Mächler, M., Bolker, B., & Walker, S. (2014). Fitting linear mixed-effects models using lme4. arXiv preprint arXiv:1406.5823.
  • Biddle, E., & Buck, B. (2019). Adaptive team training for one [Paper presentation]. Adaptive Instructional Systems: First International Conference, AIS 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA (pp. 15–27).
  • Billinghurst, M. (2021). Grand challenges for augmented reality. Frontiers in Virtual Reality, 2. https://doi.org/10.3389/frvir.2021.578080
  • Billinghurst, M., Clark, A., & Lee, G. (2015). A survey of augmented reality. Foundations and Trends® in Human–Computer Interaction, 8(2–3), 73–272. https://doi.org/10.1561/1100000049
  • Bonney, E., Jelsma, L. D., Ferguson, G. D., & Smits-Engelsman, B. C. (2017). Learning better by repetition or variation? is transfer at odds with task specific training? PloS One, 12(3), e0174214. https://doi.org/10.1371/journal.pone.0174214
  • Borghini, G., Astolfi, L., Vecchiato, G., Mattia, D., & Babiloni, F. (2014). Measuring neurophysiological signals in aircraft pilots and car drivers for the assessment of mental workload, fatigue and drowsiness. Neuroscience and Biobehavioral Reviews, 44, 58–75. https://doi.org/10.1016/j.neubiorev.2012.10.003
  • Bottani, E., & Vignali, G. (2019). Augmented reality technology in the manufacturing industry: A review of the last decade. IISE Transactions, 51(3), 284–310. https://doi.org/10.1080/24725854.2018.1493244
  • Bowman, D. A. (1999). Interaction techniques for common tasks in immersive virtual environments: Design, evaluation, and application. Georgia Institute of Technology.
  • Brasier, E., Chapuis, O., Ferey, N., Vezien, J., & Appert, C. (2020). Arpads: Mid-air indirect input for augmented reality [Paper presentation].2020 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (p. 332–343). https://doi.org/10.1109/ISMAR50242.2020.00060
  • Buckman, J. M. (2005). Chief fire officer’s desk reference. Jones & Bartlett Learning.
  • Bunce, S. C., Izzetoglu, K., Ayaz, H., Shewokis, P., Izzetoglu, M., Pourrezaei, K., & Onaral, B. (2011). Implementation of fnirs for monitoring levels of expertise and mental workload. In D. D. Schmorrow & C. M. Fidopiastis (Eds.), Foundations of augmented cognition. Directing the future of adaptive systems (pp. 13–22). Springer Berlin Heidelberg.
  • Dey, A., Chatburn, A., & Billinghurst, M. (2019). Exploration of an EEG-based cognitively adaptive training system in virtual reality [Paper presentation]. 2019 IEEE Conference on Virtual Reality and 3d User Interfaces (VR) (pp. 220–226). https://doi.org/10.1109/VR.2019.8797840
  • Doswell, J. T., & Skinner, A. (2014). Augmenting human cognition with adaptive augmented reality [Paper presentation]. Foundations of Augmented Cognition. Advancing Human Performance and Decision-Making through Adaptive Systems: 8th International Conference, AC 2014, Held as Part of HCI International 2014, Heraklion, Crete, Greece (pp. 104–113).
  • Dubb, J., Boas, D. (2016). Homer 2 toolbox, v2.1. https://www.nitrc.org/frs/shownotes.php?release\_id=3156.
  • Dwivedi, S., Hayes, J., Pedron, I., Kang, J., Brenner, L. J., Barnes, C., Bailly, A., Tanous, K., Nelson, C., Moats, J., Gabbard, J., & Mehta, R. K., others. (2022). Comparing the efficacy of AR-based training with video-based training. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 66(1), 1862–1866. https://doi.org/10.1177/1071181322661289
  • Evarts, B., & Molis, J. L. (2018). United states firefighter injuries 2017 (Tech. Rep.). National Fire Protection Association.
  • Fuentes-García, J. P., Villafaina, S., Collado-Mateo, D., De la Vega, R., Olivares, P. R., & Clemente-Suárez, V. J. (2019). Differences between high vs. low performance chess players in heart rate variability during chess problems. Frontiers in Psychology, 10, 409. https://doi.org/10.3389/fpsyg.2019.00409
  • Gevins, A., & Smith, M. E. (2003). Neurophysiological measures of cognitive workload during human-computer interaction. Theoretical Issues in Ergonomics Science, 4(1–2), 113–131. https://doi.org/10.1080/14639220210159717
  • Ghilardi, M., Ghez, C., Dhawan, V., Moeller, J., Mentis, M., Nakamura, T., Antonini, A., & Eidelberg, D. (2000). Patterns of regional brain activation associated with different forms of motor learning. Brain Research, 871(1), 127–145. https://doi.org/10.1016/s0006-8993(00)02365-9
  • Gibson, J. J. (2014). The ecological approach to visual perception (classic ed.). Psychology Press.
  • Gitelman, D. R., Parrish, T. B., Friston, K. J., & Mesulam, M.-M. (2002). Functional anatomy of visual search: Regional segregations within the frontal eye fields and effective connectivity of the superior colliculus. NeuroImage, 15(4), 970–982. https://doi.org/10.1006/nimg.2001.1006
  • Guadagnoli, M. A., & Lee, T. D. (2004). Challenge point: A framework for conceptualizing the effects of various practice conditions in motor learning. Journal of Motor Behavior, 36(2), 212–224. https://doi.org/10.3200/JMBR.36.2.212-224
  • Gupta, P., & Cohen, N. J. (2002). Theoretical and computational analysis of skill learning, repetition priming, and procedural memory. Psychological Review, 109(2), 401–448. https://doi.org/10.1037/0033-295x.109.2.401
  • Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cournapeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M., Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., Del Río, J. F., Wiebe, M., Peterson, P., … Oliphant, T. E. (2020). Array programming with NumPy. Nature, 585(7825), 357–362. https://doi.org/10.1038/s41586-020-2649-2
  • Hart, S. G. (2006). Nasa-task load index (NASA-TLX); 20 years later [Paper presentation]. Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 50, pp. 904–908). https://doi.org/10.1177/154193120605000909
  • Hayes, J., Dwivedi, S., Karthikeyan, R., Abujelala, M., Kang, J., Ye, Y., Du, E., & Mehta, R. K. (2022). Identifying early predictors of learning in VR-based drone training. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 66(1), 1872–1876. https://doi.org/10.1177/1071181322661254
  • Henderson, S. J., Feiner, S. K. (2011). Augmented reality in the psychomotor phase of a procedural task [Paper presentation]. 2011 10th IEEE International Symposium on Mixed and Augmented Reality (pp. 191–200).
  • Herndon, K. P., Van Dam, A., & Gleicher, M. (1994). The challenges of 3d interaction: A CHI’94 workshop. ACM SIGCHI Bulletin, 26(4), 36–43. https://doi.org/10.1145/191642.191652
  • Hoshi, Y., Kobayashi, N., & Tamura, M. (2001). Interpretation of near-infrared spectroscopy signals: A study with a newly developed perfused rat brain model. Journal of Applied Physiology, 90(5), 1657–1662. https://doi.org/10.1152/jappl.2001.90.5.1657
  • Huang, G., Qian, X., Wang, T., Patel, F., Sreeram, M., Cao, Y., Ramani, K., & Quinn, A. J. (2021). Adaptutar: An adaptive tutoring system for machine tasks in augmented reality [Paper presentation]. Proceedings of the 2021 Chi Conference on Human Factors in Computing Systems (pp. 1–15). https://doi.org/10.1145/3411764.3445283
  • Huang, H.-M., Huang, T.-C., & Cheng, C.-Y. (2022). Reality matters? Exploring a tangible user interface for augmented-reality-based fire education. Universal Access in the Information Society, 21(4), 927–939. https://doi.org/10.1007/s10209-021-00808-0
  • Huppert, T. J., Diamond, S. G., Franceschini, M. A., & Boas, D. A. (2009). Homer: A review of time-series analysis methods for near-infrared spectroscopy of the brain. Applied Optics, 48(10), D280–D298. https://doi.org/10.1364/ao.48.00d280
  • Iizuka, T., Ohiwa, N., Atomi, T., Shimizu, M., & Atomi, Y. (2020). Morning heart rate variability as an indication of fatigue status in badminton players during a training camp. Sports, 8(11), 147. https://doi.org/10.3390/sports8110147
  • Jahani, S., Setarehdan, S. K., Boas, D. A., & Yücel, M. A. (2018). Motion artifact detection and correction in functional near-infrared spectroscopy: A new hybrid method based on spline interpolation method and Savitzky–Golay filtering. Neurophotonics, 5(1), 015003–015003. https://doi.org/10.1117/1.NPh.5.1.015003
  • Jensen, E. (2005). Teaching with the brain in mind. ASCD.
  • Karthikeyan, R., Smoot, M. R., & Mehta, R. K. (2021). Anodal tDCS augments and preserves working memory beyond time-on-task deficits. Scientific Reports, 11(1), 19134. https://doi.org/10.1038/s41598-021-98636-y
  • Kast, V., & Leukel, C. (2016). Motor experts care about consistency and are reluctant to change motor outcome. PloS One, 11(8), e0161798. https://doi.org/10.1371/journal.pone.0161798
  • Kelley, C. R. (1969). What is adaptive training? Human Factors: The Journal of the Human Factors and Ergonomics Society, 11(6), 547–556. https://doi.org/10.1177/001872086901100602
  • Kesedžić, I., Šarlija, M., Božek, J., Popović, S., & Ćosić, K. (2021). Classification of cognitive load based on neurophysiological features from functional near-infrared spectroscopy and electrocardiography signals on n-back task. IEEE Sensors Journal, 21(13), 14131–14140. https://doi.org/10.1109/JSEN.2020.3038032
  • Klepsch, M., Schmitz, F., & Seufert, T. (2017). Development and validation of two instruments measuring intrinsic, extraneous, and germane cognitive load. Frontiers in Psychology, 8, 1997. https://doi.org/10.3389/fpsyg.2017.01997
  • Kopper, R., Bowman, D. A., Silva, M. G., & McMahan, R. P. (2010). A human motor behavior model for distal pointing tasks. International Journal of Human-Computer Studies, 68(10), 603–615. https://doi.org/10.1016/j.ijhcs.2010.05.001
  • LaViola, J., Williamson, B., Brooks, C., Veazanchin, S., Sottilare, R., Garrity, P. (2015). Using augmented reality to tutor military tasks in the wild [Paper presentation]. Proceedings of the Interservice/Industry Training Simulation & Education Conference.
  • Looser, J., Billinghurst, M., Grasset, R., & Cockburn, A. (2007). An evaluation of virtual lenses for object selection in augmented reality [Paper presentation]. Proceedings of the 5th International Conference on Computer Graphics and Interactive Techniques in Australia and Southeast Asia (pp. 203–210). https://doi.org/10.1145/1321261.1321297
  • Ma, M., Fallavollita, P., Seelbach, I., Von Der Heide, A. M., Euler, E., Waschke, J., & Navab, N. (2016). Personalized augmented reality for anatomy education. Clinical Anatomy, 29(4), 446–453. https://doi.org/10.1002/ca.22675
  • Masood, T., & Egger, J. (2019). Augmented reality in support of industry 4.0—Implementation challenges and success factors. Robotics and Computer-Integrated Manufacturing, 58, 181–195. https://doi.org/10.1016/j.rcim.2019.02.003
  • Mehta, R., Moats, J., Karthikeyan, R., Gabbard, J., Srinivasan, D., Du, E., Leonessa, A., Burks, G., Stephenson, A., & Fernandes, R. (2022). Human-centered intelligent training for emergency responders. AI Magazine, 43(1), 83–92. https://doi.org/10.1609/aimag.v43i1.19129
  • Melo, H. M., Nascimento, L. M., & Takase, E. (2017). Mental fatigue and heart rate variability (hrv): The time-on-task effect. Psychology & Neuroscience, 10(4), 428–436. https://doi.org/10.1037/pne0000110
  • Micheletti, C. (1996). A survey of medical neuroscience. Neurophysiologie Clinique/Clinical Neurophysiology, 26(6), 450–451. https://doi.org/10.1016/S0987-7053(97)89213-1
  • Militello, L., Sushereba, C., Hernandez, O., & Patterson, E. S. (2019). Augmented reality adaptive training principles. Proceedings of the International Symposium on Human Factors and Ergonomics in Health Care, 8(1), 72–75. In https://doi.org/10.1177/2327857919081016
  • Młynarska, E., Greene, D., & Cunningham, P. (2016). Time series clustering of moodle activity data [Paper presentation]. 24th Irish Conference on Artificial Intelligence and Cognitive Science (AICS’16), Dublin, Ireland, University College Dublin.
  • Mohanty, R. R., & Krishnamurthy, V. R. (2021). Kinesthetic metaphors for precise spatial manipulation: A study of object rotation. Journal of Computing and Information Science in Engineering, 21(2), 021010. https://doi.org/10.1115/1.4048618
  • Mukherjee, S., Yadav, R., Yung, I., Zajdel, D. P., & Oken, B. S. (2011). Sensitivity to mental effort and test–retest reliability of heart rate variability measures in healthy seniors. Clinical Neurophysiology: official Journal of the International Federation of Clinical Neurophysiology, 122(10), 2059–2066. https://doi.org/10.1016/j.clinph.2011.02.032
  • Nizam, S. M., Abidin, R. Z., Hashim, N. C., Lam, M. C., Arshad, H., & Majid, N. (2018). A review of multimodal interaction technique in augmented reality environment. International Journal on Advanced Science, Engineering and Information Technology, 8(4–2), 1460. https://doi.org/10.18517/ijaseit.8.4-2.6824
  • Nunes, I. L., Lucas, R., Simões-Marques, M., & Correia, N. (2018). Augmented reality in support of disaster response [Paper presentation]. Advances in Human Factors and Systems Interaction: Proceedings of the Ahfe 2017 International Conference on Human Factors and Systems Interaction, Los Angeles, California, USA, The Westin Bonaventure Hotel (Vol. 8, pp. 155–167).
  • O’Brien, H. L., Cairns, P., & Hall, M. (2018). A practical approach to measuring user engagement with the refined user engagement scale (UES) and new UES short form. International Journal of Human-Computer Studies, 112, 28–39. https://doi.org/10.1016/j.ijhcs.2018.01.004
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A., Cournapeau, D., Brucher, M., Perrot, M., & Duchesnay, E. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. https://doi.org/10.5555/1953048.2078195
  • Peretz, C., Korczyn, A. D., Shatil, E., Aharonson, V., Birnboim, S., & Giladi, N. (2011). Computer-based, personalized cognitive training versus classical computer games: A randomized double-blind prospective trial of cognitive stimulation. Neuroepidemiology, 36(2), 91–99. https://doi.org/10.1159/000323950
  • Rhee, J., & Mehta, R. K. (2018). Functional connectivity during handgrip motor fatigue in older adults is obesity and sex-specific. Frontiers in Human Neuroscience, 12, 455. https://doi.org/10.3389/fnhum.2018.00455
  • Saxena, A., Prasad, M., Gupta, A., Bharill, N., Patel, O. P., Tiwari, A., Er, M. J., Ding, W., & Lin, C.-T. (2017). A review of clustering techniques and developments. Neurocomputing, 267, 664–681. https://doi.org/10.1016/j.neucom.2017.06.053
  • Seidler, R. D., Noll, D. C., & Thiers, G. (2004). Feedforward and feedback processes in motor control. NeuroImage, 22(4), 1775–1783. https://doi.org/10.1016/j.neuroimage.2004.05.003
  • Shafeeq, A., Hareesha, K. (2012). Dynamic clustering of data with modified k-means algorithm [Paper presentation]. Proceedings of the 2012 Conference on Information and Computer Networks (pp. 221–225).
  • Sher, V., Hatala, M., & Gašević, D. (2020). Analyzing the consistency in within-activity learning patterns in blended learning [Paper presentation].Proceedings of the Tenth International Conference on Learning Analytics & Knowledge, In (pp. 1–10). https://doi.org/10.1145/3375462.3375470
  • Shi, Y., Zhu, Y., Mehta, R. K., & Du, J. (2020). A neurophysiological approach to assess training outcome under stress: A virtual reality experiment of industrial shutdown maintenance using functional near-infrared spectroscopy (fNIRS). Advanced Engineering Informatics, 46, 101153. https://doi.org/10.1016/j.aei.2020.101153
  • Simon, S. R., Meunier, M., Piettre, L., Berardi, A. M., Segebarth, C. M., & Boussaoud, D. (2002). Spatial attention and memory versus motor preparation: Premotor cortex involvement as revealed by fMRI. Journal of Neurophysiology, 88(4), 2047–2057. https://doi.org/10.1152/jn.2002.88.4.2047
  • Souchet, A. D., Philippe, S., Lourdeaux, D., & Leroy, L. (2022). Measuring visual fatigue and cognitive load via eye tracking while learning with virtual reality head-mounted displays: A review. International Journal of Human–Computer Interaction, 38(9), 801–824. https://doi.org/10.1080/10447318.2021.1976509
  • Steed, A., Pan, Y., Zisch, F., & Steptoe, W. (2016). The impact of a self-avatar on cognitive load in immersive virtual reality. [Paper presentation]. 2016 IEEE Virtual Reality (VR) (pp. 67–76). https://doi.org/10.1109/VR.2016.7504689
  • Suriya-Prakash, M., John-Preetham, G., & Sharma, R. (2015). Is heart rate variability related to cognitive performance in visuospatial working memory? PeerJ PrePrints, 3, e1377v1. https://doi.org/10.7287/peerj.preprints.1377v1
  • Tanaka, A., Craighead, J., Taylor, G., & Sottilare, R. (2019). Adaptive learning technology for AR training: Possibilities and challenges [Paper presentation]. Adaptive Instructional Systems: First International Conference, AIS 2019, Held as Part of the 21st HCI International Conference, HCII 2019, Orlando, FL, USA (pp. 142–150).
  • Tao, Y., Coltey, E., Wang, T., Alonso, M., Shyu, M.-L., Chen, S.-C., Alhaffar, H., Elias, A., Bogosian, B., & Vassigh, S. (2020). Confidence estimation using machine learning in immersive learning environments [Paper presentation]. 2020 IEEE Conference on Multimedia Information Processing and Retrieval (MIPR) (pp. 247–252). https://doi.org/10.1109/MIPR49039.2020.00058
  • Tjolleng, A., Jung, K., Hong, W., Lee, W., Lee, B., You, H., Son, J., & Park, S. (2017). Classification of a driver’s cognitive workload levels using artificial neural network on ECG signals. Applied Ergonomics, 59(Pt A), 326–332. https://doi.org/10.1016/j.apergo.2016.09.013
  • Tomasi, D., Wang, G.-J., & Volkow, N. D. (2013). Energetic cost of brain functional connectivity. Proceedings of the National Academy of Sciences of the United States of America, 110(33), 13642–13647. https://doi.org/10.1073/pnas.1303346110
  • Tran, Y., Wijesuriya, N., Tarvainen, M., Karjalainen, P., & Craig, A. (2009). The relationship between spectral changes in heart rate variability and fatigue. Journal of Psychophysiology, 23(3), 143–151. https://doi.org/10.1027/0269-8803.23.3.143
  • Tyagi, O., Hopko, S., Kang, J., Shi, Y., Du, J., & Mehta, R. K. (2021). Modeling brain dynamics during virtual reality-based emergency response learning under stress. Human Factors, 187208211054894. 00187208211054894. https://doi.org/10.1177/00187208211054894
  • Vávra, P., Roman, J., Zonča, P., Ihnát, P., Němec, M., Kumar, J., Habib, N., & El-Gendi, A. (2017). Recent development of augmented reality in surgery: A review. Journal of Healthcare Engineering, 2017, 4574172–4574179. https://doi.org/10.1155/2017/4574172
  • Vleugels, L. W., Swinnen, S. P., & Hardwick, R. M. (2020). Skill acquisition is enhanced by reducing trial-to-trial repetition. Journal of Neurophysiology, 123(4), 1460–1471. https://doi.org/10.1152/jn.00741.2019
  • Walia, P., Fu, Y., Norfleet, J., Schwaitzberg, S. D., Intes, X., De, S., Cavuoto, L., & Dutta, A. (2022). Error related fNIRS-EEG microstate analysis during a complex surgical motor task [Paper presentation]. 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 941–944). https://doi.org/10.1109/EMBC48229.2022.9871175
  • Westerfield, G., Mitrovic, A., & Billinghurst, M. (2015). Intelligent augmented reality training for motherboard assembly. International Journal of Artificial Intelligence in Education, 25(1), 157–172. https://doi.org/10.1007/s40593-014-0032-x
  • Wolf, J., Lohmeyer, Q., Holz, C., & Meboldt, M. (2021). Gaze comes in handy: Predicting and preventing erroneous hand actions in AR-supported manual tasks [Paper presentation]. 2021 IEEE International Symposium on Mixed and Augmented Reality (ISMAR), In (pp. 166–175). https://doi.org/10.1109/ISMAR52148.2021.00031
  • Wu, H. G., Miyamoto, Y. R., Castro, L. N. G., Ölveczky, B. P., & Smith, M. A. (2014). Temporal structure of motor variability is dynamically regulated and predicts motor learning ability. Nature Neuroscience, 17(2), 312–321. https://doi.org/10.1038/nn.3616
  • Xu, W., Liang, H.-N., He, A., & Wang, Z. (2019). Pointing and selection methods for text entry in augmented reality head mounted displays [Paper presentation]. 2019 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 279–288). https://doi.org/10.1109/ISMAR.2019.00026
  • Ye, Y., Shi, Y., Xia, P., Kang, J., Tyagi, O., Mehta, R. K., & Du, J. (2022). Cognitive characteristics in firefighter wayfinding tasks: An eye-tracking analysis. Advanced Engineering Informatics, 53, 101668. https://doi.org/10.1016/j.aei.2022.101668
  • Zhou, J., & Bhat, S. (2021). Modeling consistency using engagement patterns in online courses [Paper presentation]. Lak21: 11th International Learning Analytics and Knowledge Conference, In (pp. 226–236). https://doi.org/10.1145/3448139.3448161
  • Zhu, Y., Rodriguez-Paras, C., Rhee, J., & Mehta, R. K. (2020). Methodological approaches and recommendations for functional near-infrared spectroscopy applications in HF/E research. Human Factors, 62(4), 613–642. https://doi.org/10.1177/0018720819845275

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.