1,889
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Mental Workload and Human-Robot Interaction in Collaborative Tasks: A Scoping Review

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 06 Feb 2023, Accepted 23 Aug 2023, Published online: 20 Sep 2023

References

  • Abeliansky, A., & Beulmann, M. (2019). Are they coming for us? Industrial robots and the mental health of workers (cege Discussion Papers, No. 379). University of Göttingen, Center for European, Governance and Economic Development Research (cege).
  • Alsuraykh, N. H., Wilson, M. L., Tennent, P., & Sharples, S. (2019). How stress and mental workload are connected [Paper presentation].Proceedings of the 13th EAI international conference on pervasive computing technologies for healthcare, 371–376. https://doi.org/10.1145/3329189.3329235
  • Anmarkrud, Ø., Andresen, A., & Bråten, I. (2019). Cognitive load and working memory in multimedia learning: Conceptual and measurement issues. Educational Psychologist, 54(2), 61–83. https://doi.org/10.1080/00461520.2018.1554484
  • Arai, T., Kato, R., & Fujita, M. (2010). Assessment of operator stress induced by robot collaboration in assembly. CIRP Annals, 59(1), 5–8. https://doi.org/10.1016/j.cirp.2010.03.043
  • Arksey, H., & O’Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
  • Arntz, A., Eimler, S. C., & Hoppe, H. U. (2020). Augmenting the human-robot communication channel in shared task environments (vol. 12324). Springer Science and Business Media Deutschland GmbH. https://doi.org/10.1007/978-3-030-58157-2_2
  • Baltrusch, S., Krause, F., de Vries, A., Dijk, W., & Looze, M. P. (2022). What about the human in human robot collaboration? A literature review on HRC’s effects on aspects of job quality. Ergonomics, 65(5), 719–740. https://doi.org/10.1080/00140139.2021.1984585
  • Bernhardt, A., Kresge, L., & Suleiman, R. (2023). The data-driven workplace and the case for worker technology rights. ILR Review, 76(1), 3–29. https://doi.org/10.1177/00197939221131558
  • Bernhardt, A., Kresge, L., Suleiman, R. (2021). Data and algorithms at work: The case for worker. UC Berkeley Labor Center. https://policycommons.net/artifacts/2186631/data-and-algorithms-at-work/2942608/
  • Bettoni, A., Montini, E., Righi, M., Villani, V., Tsvetanov, R., Borgia, S., Secchi, C., & Carpanzano, E. (2020). Mutualistic and adaptive human-machine collaboration based on machine learning in an injection moulding manufacturing line. Procedia CIRP, 93, 395–400. https://doi.org/10.1016/j.procir.2020.04.119
  • Brolin, A., Thorvald, P., & Case, K. (2017). Experimental study of cognitive aspects affecting human performance in manual assembly. Production & Manufacturing Research, 5(1), 141–163. https://doi.org/10.1080/21693277.2017.1374893
  • Brun, L., & Wioland, L. (2021). Prevention of occupational risks related to the human-robot collaboration (vol. 1253). Springer. https://doi.org/10.1007/978-3-030-55307-4_67
  • Butmee, T., Lansdown, T., & Walker, G. (2019). Mental workload and performance measurements in driving task: A review literature. Transport Ergonomics and Human Factors (TEHF), Aerospace Human Factors and Ergonomics, VI, 286–294. https://doi.org/10.1007/978-3-319-96074-6_31
  • Cain, B. (2007). A Review of the Mental Workload Literature. https://apps.dtic.mil/sti/citations/ADA474193
  • Carayon, P., Smith, M. J., & Haims, M. C. (1999). Work organization, job stress, and work-related musculoskeletal disorders. Human Factors, 41(4), 644–663. https://doi.org/10.1518/001872099779656743
  • Castillo, J. M., Galy, E., & Thérouanne, P. (2021). Étude de la charge mentale et du stress généré par l’usage du numérique dans le milieu professionnel. Comité D’organisation Des Doctoriales Comité De Lecture, 4.
  • Chacón, A., Ponsa, P., & Angulo, C. (2021). Cognitive interaction analysis in human–robot collaboration using an assembly task. Electronics, 10(11), 1317. https://doi.org/10.3390/electronics10111317
  • Chan, S. F., & Greca, A. M. L. (2013). Perceived stress scale (PSS). In Encyclopedia of behavioral medicine (pp. 1454–1455). https://doi.org/10.1007/978-1-4419-1005-9_773
  • Chen, J. Y. C., Barnes, M. J., Selkowitz, A. R., & Stowers, K. (2016). Effects of agent transparency on human-autonomy teaming effectiveness [Paper presentation].2016 IEEE international conference ON systems, Man, AND Cybernetics (Smc), 1838–1843. https://doi.org/10.1109/SMC.2016.7844505
  • Cohen, S. (1994). Perceived stress scale.
  • Cohen, S., Kessler, R. C., & Gordon, L. U. (1997). Measuring stress: A guide for health and social scientists. Oxford University Press.
  • Corujeira, J., Silva, J. L., & Ventura, R. (2017). Effects of haptic feedback in dual-task teleoperation of a mobile robot. In R. Bernhaupt, G. Dalvi, A. Joshi, D. K. Balkrishan, J. O’Neill, & M. Winckler (Eds.), Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics) (pp. 267–286). Springer. https://doi.org/10.1007/978-3-319-67687-6_18
  • Csikszentmihalyi, M. (1975). Beyond boredom and anxiety. The experience of play in work and games. https://psycnet.apa.org/record/2000-12701-000
  • Csikszentmihalyi, M. (1990). Flow. The psychology of optimal experience. New York (HarperPerennial) 1990. HarperCollins. https://opus4.kobv.de/opus4-Fromm/frontdoor/index/index/docId/27641
  • Csikszentmihalyi, M. (1997). Finding flow: The psychology of engagement with everyday life. http://psycnet.apa.org/record/1997-08434-000
  • Csikszentmihalyi, M. (2000). Beyond boredom and anxiety. Jossey-bass.
  • Csikszentmihalyi, M., & LeFevre, J. (1989). Optimal experience in work and leisure. Journal of Personality and Social Psychology, 56(5), 815–822. https://doi.org/10.1037/0022-3514.56.5.815
  • Darvishmotevali, M., & Ali, F. (2020). Job insecurity, subjective well-being and job performance: The moderating role of psychological capital. International Journal of Hospitality Management, 87, 102462. https://doi.org/10.1016/j.ijhm.2020.102462
  • Dautenhahn, K. (2007). Socially intelligent robots: Dimensions of human–robot interaction. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 362(1480), 679–704. https://doi.org/10.1098/rstb.2006.2004
  • De Rivecourt, M., Kuperus, M. N., Post, W. J., & Mulder, L. J. M. (2008). Cardiovascular and eye activity measures as indices for momentary changes in mental effort during simulated flight. Ergonomics, 51(9), 1295–1319. https://doi.org/10.1080/00140130802120267
  • De Simone, Valentina, V. D., Di Pasquale, V. D., Giubileo, V., & Miranda, S. (2022). Human-robot collaboration: An analysis of worker’s performance. Procedia Computer Science, 200, 1540–1549. https://doi.org/10.1016/j.procs.2022.01.355
  • Delle Fave, A., Massimini, F., & Bassi, M. (2011). Psychological selection and optimal experience across cultures: social empowerment through personal growth. Springer Science & Business Media.
  • Delliaux, S., Delaforge, A., Deharo, J.-C., & Chaumet, G. (2019). Mental workload alters heart rate variability, lowering non-linear dynamics. Frontiers in Physiology, 10, 565. https://doi.org/10.3389/fphys.2019.00565
  • Demerouti, E. (2006). Job characteristics, flow, and performance: The moderating role of conscientiousness. Journal of Occupational Health Psychology, 11(3), 266–280. https://doi.org/10.1037/1076-8998.11.3.266
  • Demerouti, E., Hewett, R., Haun, V., De Gieter, S., Rodríguez-Sánchez, A., & Skakon, J. (2020). From job crafting to home crafting: A daily diary study among six European countries. Human Relations, 73(7), 1010–1035. https://doi.org/10.1177/0018726719848809
  • Etzi, R., Huang, S., Scurati, G. W., Lyu, S., Ferrise, F., Gallace, A., Gaggioli, A., Chirico, A., Carulli, M., & Bordegoni, M. (2020). Using virtual reality to test human-robot interaction during a collaborative task [Paper presentation]. Proceedings OF THE asme international design engineering technical conferences AND computers AND information IN engineering conference, 2019, Vol 1, 1–8. https://doi.org/10.1115/DETC2019-97415
  • European Agency for Safety and Health at Work (EU-OSHA). (2013). European opinion poll on occupational safety and health (p. 83). Publications Office of the European Union. https://osha.europa.eu/sites/default/files/safety-health-in-figures/eu-poll-press-kit-2013.pdf
  • EU-OSHA. (2015). Second European survey of enterprises on new and emerging risks (ESENER-2). Publications Office of the European Union Luxembourg. https://op.europa.eu/s/xmNU
  • Faccio, M., Granata, I., Menini, A., Milanese, M., Rossato, C., Bottin, M., Minto, R., Pluchino, P., Gamberini, L., Boschetti, G., & Rosati, G. (2023). Human factors in cobot era: A review of modern production systems features. Journal of Intelligent Manufacturing, 34(1), 85–106. https://doi.org/10.1007/s10845-022-01953-w
  • Fallahi, M., Motamedzade, M., Heidarimoghadam, R., Soltanian, A. R., & Miyake, S. (2016). Effects of mental workload on physiological and subjective responses during traffic density monitoring: A field study. Applied Ergonomics, 52, 95–103. https://doi.org/10.1016/j.apergo.2015.07.009
  • Fletcher, S. R., & Webb, P. (2017). Industrial robot ethics: The challenges of closer human collaboration in future manufacturing systems. In Intelligent systems, control and automation (vol. 84, pp. 159–169). https://doi.org/10.1007/978-3-319-46667-5_12
  • Fournier, É., Kilgus, D., Landry, A., Hmedan, B., Pellier, D., Fiorino, H., & Jeoffrion, C. (2022). The impacts of human-cobot collaboration on perceived cognitive load and usability during an industrial task: An exploratory experiment. IISE Transactions on Occupational Ergonomics and Human Factors, 10(2), 83–90. https://doi.org/10.1080/24725838.2022.2072021
  • Fujita, M., Kato, R., & Tamio, A. (2010). Assessment of operators’ mental strain induced by hand-over motion of industrial robot manipulator [Paper presentation]. Proceedings - IEEE international workshop on robot and human interactive communication, 361–366. https://doi.org/10.1109/ROMAN.2010.5598689
  • Fullagar, C., & Delle Fave, A. (Eds.). (2017). Flow at Work: Measurement and Implications (1st ed.). Routledge. https://doi.org/10.4324/9781315871585
  • Gaab, J. (2009). PASA – Primary appraisal secondary appraisal—Ein Fragebogen zur Erfassung von situations-bezogenen kognitiven Bewertungen. Verhaltenstherapie, 19(2), 114–115. https://doi.org/10.1159/000223610
  • Gaillard, A. W. (1993). Comparing the concepts of mental load and stress. Ergonomics, 36(9), 991–1005. https://doi.org/10.1080/00140139308967972
  • Gaillard, A. W. K. (2001). Stress, workload, and fatigue as three biobehavioral states: A general overview. In Stress, workload, and fatigue (pp. 623–639). Lawrence Erlbaum Associates Publishers.
  • Gaillard, A. W. K., & Wientjes, C. J. E. (1994). Mental load and work stress as two types of energy mobilization. Work & Stress, 8(2), 141–152. https://doi.org/10.1080/02678379408259986
  • Gervasi, R., Digiaro, F. N., Mastrogiacomo, L., Maisano, D. A., & Franceschini, F. (2020). Comparing quality profiles in human-robot collaboration: Empirical evidence in the automotive sector (pp. 79–104). Universidade do Minho. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85093842708&partnerID=40&md5=74b8bba40739bf784c45ab644c1e8704
  • Gervasi, R., Mastrogiacomo, L., & Franceschini, F. (2020). A conceptual framework to evaluate human-robot collaboration. The International Journal of Advanced Manufacturing Technology, 108(3), 841–865. https://doi.org/10.1007/s00170-020-05363-1
  • Gjoreski, M., Luštrek, M., Gams, M., & Gjoreski, H. (2017). Monitoring stress with a wrist device using context. Journal of Biomedical Informatics, 73, 159–170. https://doi.org/10.1016/j.jbi.2017.08.006
  • González-Muñoz, E. L., & Gutiérrez-Martínez, R. E. (2007). Contribution of mental workload to job stress in industrial workers. Work (Reading, Mass), 28(4), 355–361.
  • Hammerling, J. H. (2022). Technological change in five industries: Threats to jobs, wages, and working conditions.
  • Hart, S. G. (2006). NASA-task load index (NASA-TLX); 20 years later. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 50(9), 904–908. https://doi.org/10.1177/154193120605000909
  • Hart, S. G., & Staveland, L. E. (1988). Development of NASA-TLX (task load index): Results of empirical and theoretical research. Advances in Psychology, 52(2), 139–183. https://doi.org/10.1016/S0166-4115(08)62386-9
  • Helton, W. S. (2004). Validation of a short stress state questionnaire. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 48(11), 1238–1242. https://doi.org/10.1177/154193120404801107
  • Hidalgo-Muñoz, A. R., Mouratille, D., Matton, N., Causse, M., Rouillard, Y., & El-Yagoubi, R. (2018). Cardiovascular correlates of emotional state, cognitive workload and time-on-task effect during a realistic flight simulation. International Journal of Psychophysiology : official Journal of the International Organization of Psychophysiology, 128, 62–69. https://doi.org/10.1016/j.ijpsycho.2018.04.002
  • Hjortskov, N., Rissén, D., Blangsted, A. K., Fallentin, N., Lundberg, U., & Søgaard, K. (2004). The effect of mental stress on heart rate variability and blood pressure during computer work. European Journal of Applied Physiology, 92(1-2), 84–89. https://doi.org/10.1007/s00421-004-1055-z
  • Holm, A. (2010). Developing neurophysiological metrics for the assessment of mental workload and the functional state of the brain. Aalto-yliopiston teknillinen korkeakoulu. https://aaltodoc.aalto.fi:443/handle/123456789/4769
  • Holm, A., Lukander, K., Korpela, J., Sallinen, M., & Müller, K. M. I. (2009). Estimating brain load from the EEG. TheScientificWorldJournal, 9, 639–651. https://doi.org/10.1100/tsw.2009.83
  • Hopko, S. K., Khurana, R., Mehta, R. K., & Pagilla, P. R. (2021). Effect of cognitive fatigue, operator sex, and robot assistance on task performance metrics, workload, and situation awareness in human-robot collaboration. IEEE Robotics and Automation Letters, 6(2), 3049–3056. https://doi.org/10.1109/LRA.2021.3062787
  • Hopko, S., Wang, J., & Mehta, R. (2022). Human factors considerations and metrics in shared space human-robot collaboration: A systematic review. Frontiers in Robotics and AI, 9, 799522. https://doi.org/10.3389/frobt.2022.799522
  • Hou, X., Liu, Y., Sourina, O., Tan, Y. R. E., Wang, L., & Mueller-Wittig, W. (2015). EEG based stress monitoring [Paper presentation]. 2015 IEEE international conference on systems, man, and cybernetics, 3110–3115. https://doi.org/10.1109/SMC.2015.540
  • International Organization for Standardization. (2016). ISO/TS 15066:2016—Robots and robotic devices—Collaborative robots. ISO. https://www.iso.org/obp/ui/#iso:std:iso:ts:15066:ed-1:v1:en
  • ISO. (2017). 10075-1: Ergonomic principles related to mental workload–Part 1: General issues and concepts, terms and definitions. CEN.
  • Iwasaki, Y., Navarro, B., Iwata, H., & Ganesh, G. (2022). Embodiment modifies attention allotment for the benefit of dual task performance. Communications Biology, 5(1), 1. https://doi.org/10.1038/s42003-022-03603-6
  • Jacobs, J. V., Hettinger, L. J., Huang, Y.-H., Jeffries, S., Lesch, M. F., Simmons, L. A., Verma, S. K., & Willetts, J. L. (2019). Employee acceptance of wearable technology in the workplace. Applied Ergonomics, 78, 148–156. https://doi.org/10.1016/j.apergo.2019.03.003
  • Kantowitz, B. H. (1987). 3. Mental workload. In P. A. Hancock (Ed.), Advances in psychology (vol. 47, pp. 81–121). https://doi.org/10.1016/S0166-4115(08)62307-9
  • Kato, R., Fujita, M., & Arai, T. (2010). Development of advanced cellular manufacturing system with human-robot collaboration-assessment of mental strain on human operators induced by the assembly support [Paper presentation]. Proceedings - IEEE international workshop on robot and human interactive communication, 355–360. https://doi.org/10.1109/ROMAN.2010.5598700
  • Kolbeinsson, A., Thorvald, P., & Lindblom, J. (2017). Coordinating the interruption of assembly workers in manufacturing. Applied Ergonomics, 58, 361–371. https://doi.org/10.1016/j.apergo.2016.07.015
  • Koppenborg, M., Nickel, P., Naber, B., Lungfiel, A., & Huelke, M. (2017). Effects of movement speed and predictability in human–robot collaboration. Human Factors and Ergonomics in Manufacturing & Service Industries, 27(4), 197–209. https://doi.org/10.1002/hfm.20703
  • Körner, U., Müller‐Thur, K., Lunau, T., Dragano, N., Angerer, P., & Buchner, A. (2019). Perceived stress in human–machine interaction in modern manufacturing environments—Results of a qualitative interview study. Stress and Health, 35(2), 187–199. https://doi.org/10.1002/smi.2853
  • Lagomarsino, M., Lorenzini, M., Balatti, P., Momi, E. D., & Ajoudani, A. (2022). Pick the right co-worker: Online assessment of cognitive ergonomics in human-robot collaborative assembly. IEEE Transactions on Cognitive and Developmental Systems, 1–1. https://doi.org/10.1109/TCDS.2022.3182811
  • Lazarus, R. S., & Folkman, S. (1984). Stress, appraisal, and coping. Springer Publishing Company.
  • Levac, D., Colquhoun, H., & O'Brien, K. K. (2010). Scoping studies: Advancing the methodology. Implementation Science, 5(1), 69. https://doi.org/10.1186/1748-5908-5-69
  • Li, W., Li, R., Xie, X., & Chang, Y. (2022). Evaluating mental workload during multitasking in simulated flight. Brain and Behavior, 12(4), e2489. https://doi.org/10.1002/brb3.2489
  • Litzenberger, G. (2019). IFR publishes collaborative industrial robot definition and estimates supply. International Federation of Robotics [Online].
  • Llorens, S., Salanova, M., & Rodriguez, A. M. (2013). How is flow experienced and by whom? Testing flow among occupations. Stress and Health : journal of the International Society for the Investigation of Stress, 29(2), 125–137. https://doi.org/10.1002/smi.2436
  • Longo, L. (2015). A defeasible reasoning framework for human mental workload representation and assessment. Behaviour & Information Technology, 34(8), 758–786. https://doi.org/10.1080/0144929X.2015.1015166
  • Longo, L., Wickens, C. D., Hancock, G., & Hancock, P. A. (2022). Human Mental Workload: A Survey and a Novel Inclusive Definition. Frontiers in Psychology, 13, 883321. https://doi.org/10.3389/fpsyg.2022.883321
  • Lorenzini, M., Lagomarsino, M., Fortini, L., Gholami, S., & Ajoudani, A. (2023). Ergonomic human-robot collaboration in industry: A review. Frontiers in Robotics and AI, 9, 262.
  • Lu, L., Xie, Z., Wang, H., Li, L., & Xu, X. (2022). Mental stress and safety awareness during human-robot collaboration—Review. Applied Ergonomics, 105, 103832. https://doi.org/10.1016/j.apergo.2022.103832
  • Macdonald, W. (2003). The impact of job demands and workload on stress and fatigue. Australian Psychologist, 38(2), 102–117. https://doi.org/10.1080/00050060310001707107
  • Matthews, G., Zeidner, M., Roberts, R. D. (2002). Emotional intelligence: Science and myth. MIT Press. https://books.google.it/books?hl=it&lr=&id=Fy9gXBgREtQC&oi=fnd&pg=PR11&dq=Emotional+Intelligence+Science+and+Myth&ots=lskQqRlGMC&sig=8sB8tgBWz5-beywGlGmgWM2pmCA#v=onepage&q=EmotionalIntelligence Science and Myth&f=false
  • Maurtua, I., Fernandez, I., Kildal, J., Susperregi, L., Tellaeche, A., & Ibarguren, A. (2016). Enhancing safe human-robot collaboration through natural multimodal communication [Paper presentation]. IEEE international conference on emerging technologies and factory automation, ETFA, 2016-Novem. https://doi.org/10.1109/ETFA.2016.7733573
  • McAleenan, P., McAleenan, C., Ayers, G., Behm, M., & Beachem, Z. (2019). The ethics deficit in occupational safety and health monitoring technologies. Proceedings of the Institution of Civil Engineers - Management, Procurement and Law, 172(3), 93–100. https://doi.org/10.1680/jmapl.18.00027
  • Meissner, A., Trübswetter, A., Conti-Kufner, A. S., & Schmidtler, J. (2020). Friend or foe understanding assembly workers’ acceptance of human-robot collaboration. ACM Transactions on Human-Robot Interaction, 10(1), 1–30. https://doi.org/10.1145/3399433
  • Messeri, C., Masotti, G., Zanchettin, A. M., & Rocco, P. (2021). Human-robot collaboration: optimizing stress and productivity based on game theory. IEEE Robotics and Automation Letters, 6(4), 8061–8068. https://doi.org/10.1109/LRA.2021.3102309
  • Messeri, C., Zanchettin, A. M., Rocco, P., Gianotti, E., Chirico, A., Magoni, S., & Gaggioli, A. (2023). On the effects of leader-follower roles in dyadic human-robot synchronisation. IEEE Transactions on Cognitive and Developmental Systems, 15(2), 434–443. https://doi.org/10.1109/TCDS.2020.2991864
  • Michaelis, J. E., Siebert-Evenstone, A., Shaffer, D. W., & Mutlu, B. (2020). Collaborative or simply uncaged? Understanding human-cobot interactions in automation [Paper presentation]. Conference on human factors in computing systems - proceedings, 1–12. https://doi.org/10.1145/3313831.3376547
  • Midha, S., Wilson, M. L., & Sharples, S. (2022). Lived experiences of mental workload in everyday life [Paper presentation]. CHI conference on human factors in computing systems, 1–16. https://doi.org/10.1145/3491102.3517690
  • Miller, S. (2001). Workload measures. National advanced driving simulator. http://www.nads-sc.uiowa.edu/publicationstorage/200501251347060.n01-006.pdf
  • Minowa, H. (2000). The workload of computer system engineers and mental health. Sangyo Eiseigaku Zasshi = Journal of Occupational Health, 42(1), 17–23. https://doi.org/10.1539/sangyoeisei.kj00002552186
  • Mital, A., & Pennathur, A. (2004). Advanced technologies and humans in manufacturing workplaces: An interdependent relationship. International Journal of Industrial Ergonomics, 33(4), 295–313. https://doi.org/10.1016/j.ergon.2003.10.002
  • Morton, J., Vanneste, P., Larmuseau, C., Van Acker, B., Raes, A., Bombeke, K., Cornillie, F., Saldien, J., & De Marez, L. (2019). Identifying predictive EEG features for cognitive overload detection in assembly workers in Industry 4.0. Human mental workload: Models and applications: Third international symposium, H-WORKLOAD 2019., November 14–15, 2019, Proceedings. 3rd international symposium on human mental workload: models and applications (H-WORKLOAD). http://hdl.handle.net/1854/LU-8629814
  • Müller, S. L., Stiehm, S., Jeschke, S., & Richert, A. (2017). Subjective stress in hybrid collaboration. In Kheddar, A., Yoshida, E., Ge, SS., Suzuki, K., Cabibihan, J. J., Eyssel, F., and He, H. (Ed.), Social robotics, ICSR 2017. (vol. 10652, pp. 597–606). Springer International Publishing AG. https://doi.org/10.1007/978-3-319-70022-9_59
  • Nenna, F., Orso, V., Zanardi, D., & Gamberini, L. (2023). The virtualization of human–robot interactions: A user-centric workload assessment. Virtual Reality, 27(2), 553–571. https://doi.org/10.1007/s10055-022-00667-x
  • Nicora, M. L., André, E., Berkmans, D., Carissoli, C., D’Orazio, T., Delle Fave, A., … Malosio, M. (2021). A human-driven control architecture for promoting good mental health in collaborative robot scenarios [Paper presentation]. 2021 30th IEEE international conference on robot & human interactive communication (RO-MAN) (pp. 285–291). IEEE. https://doi.org/10.1109/RO-MAN50785.2021.9515315
  • Niculescu, A. I., Cao, Y., Nijholt, A. (2009). Stress and cognitive load in multimodal conversational interactions. HCI international. 13th international conference on human-computer interaction, 891–895. https://research.utwente.nl/en/publications/stress-and-cognitive-load-in-multimodal-conversational-interactio
  • Panchetti, T., Pietrantoni, L., Puzzo, G., Gualtieri, L., & Fraboni, F. (2023). Assessing the relationship between cognitive workload, workstation design, user acceptance and trust in collaborative robots. Applied Sciences, 13(3), 1720. https://doi.org/10.3390/app13031720
  • Pande, D. T. (1992). Stress and mental workload: A study in an industrial organisation (IIMA working paper No. WP1992-05-01_01099). Indian Institute of Management Ahmedabad. Research and Publication Department. https://econpapers.repec.org/paper/iimiimawp/wp01099.htm
  • Parent-Thirion, A., Fernández-Macías, E., Hurley, J., & Vermeylen, G. (2007). Fourth European working conditions survey.
  • Parmentier, D. D., Van Acker, B. B., Detand, J., & Saldien, J. (2020). Design for assembly meaning: A framework for designers to design products that support operator cognition during the assembly process. Cognition, Technology & Work, 22(3), 615–632. https://doi.org/10.1007/s10111-019-00588-x
  • Peeters, M. C. W., & Plomp, J. (2022). For better or for worse: The impact of workplace automation on work characteristics and employee well-being. In Digital transformation [working title]. IntechOpen. https://doi.org/10.5772/intechopen.102980
  • Pollak, A., Paliga, M., Pulopulos, M. M., Kozusznik, B., & Kozusznik, M. W. (2020). Stress in manual and autonomous modes of collaboration with a cobot. Computers in Human Behavior, 112, 106469. https://doi.org/10.1016/j.chb.2020.106469
  • Publications Office of the European Union. (2013). European agency for safety and health at work – EU-OSHA. European Opinion Poll on Occupational Safety and Health (p. 83). Publications Office of the European Union. https://osha.europa.eu/sites/default/files/safety-health-in-figures/eu-poll-press-kit-2013.pdf
  • Rabby, K. M., Khan, M., Karimoddini, A., & Jiang, S. X. (2019). An effective model for human cognitive performance within a human-robot collaboration framework [Paper presentation]. Conference proceedings - IEEE international conference on systems, man and cybernetics, 2019-Octob, 3872–3877. https://doi.org/10.1109/SMC.2019.8914536
  • Rahman, S., & Wang, Y. (2015). Dynamic affection-based motion control of a humanoid robot to collaborate with human in flexible assembly in manufacturing [Paper presentation].ASME 2015 dynamic systems and control conference, DSCC 2015, 3 (October 2015). https://doi.org/10.1115/DSCC2015-9841
  • Rajavenkatanarayanan, A., Nambiappan, H. R., Kyrarini, M., & Makedon, F. (2020). Towards a real-time cognitive load assessment system for industrial human-robot cooperation [Paper presentation]. 2020 29th IEEE international conference ON robot AND human interactive communication (Ro-Man), 698–705. https://doi.org/10.1109/RO-MAN47096.2020.9223531
  • Rial-Gonzalez, E., Cockburn, W., & Irastorza, X. (2010). European Survey of Enterprises on New and Emerging Risks (ESENER): How is occupational safety and health managed in European workplaces? PsycEXTRA Dataset. https://doi.org/10.1037/e572992012-015
  • Robelski, S., & Wischniewski, S. (2016). Scoping review on human-machine interaction and health and safety at work. In Lecture Notes in computer science (including subseries lecture notes in artificial intelligence and lecture notes in bioinformatics) (vol. 9752, pp. 337–347). https://doi.org/10.1007/978-3-319-39399-5_32
  • Robelski, S., & Wischniewski, S. (2018). Human-machine interaction and health at work: A scoping review. International Journal of Human Factors and Ergonomics, 5(2), 93–110. https://doi.org/10.1504/IJHFE.2018.092226
  • Roncone, A., Mangin, O., & Scassellati, B. (2017). Transparent role assignment and task allocation in human robot collaboration [Paper presentation]. Proceedings - IEEE international conference on robotics and automation, 1014–1021. https://doi.org/10.1109/ICRA.2017.7989122
  • Roschelle, J., & Teasley, S. D. (1995). The construction of shared knowledge in collaborative problem solving. In Computer supported collaborative learning (pp. 69–97). Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-642-85098-1_5
  • Sato, Y., Miyake, H., & Thériault, G. (2009). Overtime work and stress response in a group of Japanese workers. Occupational Medicine (Oxford, England), 59(1), 14–19. https://doi.org/10.1093/occmed/kqn141
  • Sauppé, A., Mutlu, B., Sauppe, A., & Mutlu, B. (2015). The social impact of a robot co-worker in industrial settings [Paper presentation]. Chi 2015: Proceedings OF THE 33rd annual chi conference ON human factors IN computing systems, 2015, 3613–3622. https://doi.org/10.1145/2702123.2702181
  • Schmidtler, J., Knott, V., Hölzel, C., & Bengler, K. (2015). Human centered assistance applications for the working environment of the future. Occupational Ergonomics, 12(3), 83–95. https://doi.org/10.3233/OER-150226
  • Segura Parra, P., Lobato Calleros, O., & Ramirez-Serrano, A. (2020). Human-robot collaboration systems: Components and applications [Paper presentation]. The 7th international conference of control, dynamic systems, and robotics. https://doi.org/10.11159/cdsr20.150
  • Shao, S., Wang, T., Wang, Y., Su, Y., Song, C., & Yao, C. (2020). Research of HRV as a measure of mental workload in human and dual-arm robot interaction. Electronics, 9(12), 2174. https://doi.org/10.3390/electronics9122174
  • Smids, J., Nyholm, S., & Berkers, H. (2020). Robots in the workplace: A threat to—Or opportunity for—Meaningful work? Philosophy & Technology, 33(3), 503–522. https://doi.org/10.1007/s13347-019-00377-4
  • Storm, F. A., Chiappini, M., Dei, C., Piazza, C., André, E., Reißner, N., Brdar, I., Delle Fave, A., Gebhard, P., Malosio, M., Peña Fernández, A., Štefok, S., & Reni, G. (2022). Physical and mental well-being of cobot workers: A scoping review using the software-hardware-environment-liveware-liveware-organization model. Human Factors and Ergonomics in Manufacturing & Service Industries, 32(5), 419–435. https://doi.org/10.1002/hfm.20952
  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12(2), 257–285. https://doi.org/10.1016/0364-0213(88)90023-7
  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. https://doi.org/10.1016/0959-4752(94)90003-5
  • Sweller, J., van Merrienboer, J. J. G., & Paas, F. G. W. C. (1998). Cognitive architecture and instructional design. Educational Psychology Review, 10(3), 251–296. https://doi.org/10.1023/A:1022193728205
  • Szalma, J. L., & Taylor, G. S. (2011). Individual differences in response to automation: The five factor model of personality. Journal of Experimental Psychology. Applied, 17(2), 71–96. https://doi.org/10.1037/a0024170
  • Tan, J. T. C., Duan, F., Zhang, Y., Watanabe, K., Kato, R., & Arai, T. (2009). Human-robot collaboration in cellular manufacturing: Design and development [Paper presentation]. 2009 IEEE/RSJ International conference on intelligent robots and systems, IROS 2009, 29–34. https://doi.org/10.1109/IROS.2009.5354155
  • Tindale, L. C., Chiu, D., Minielly, N., Hrincu, V., Talhouk, A., & Illes, J. (2022). Wearable biosensors in the workplace: Perceptions and perspectives. Frontiers in Digital Health, 4, 800367. https://doi.org/10.3389/fdgth.2022.800367
  • Tricco, A. C., Lillie, E., Zarin, W., O'Brien, K. K., Colquhoun, H., Levac, D., Moher, D., Peters, M. D. J., Horsley, T., Weeks, L., Hempel, S., Akl, E. A., Chang, C., McGowan, J., Stewart, L., Hartling, L., Aldcroft, A., Wilson, M. G., Garritty, C., … Straus, S. E. (2018). PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Annals of Internal Medicine, 169(7), 467–473. https://doi.org/10.7326/M18-0850
  • Tsai, C.-Y., Marshall, J. D., Choudhury, A., Serban, A., Tsung-Yu Hou, Y., Jung, M. F., Dionne, S. D., & Yammarino, F. J. (2022). Human-robot collaboration: A multilevel and integrated leadership framework. The Leadership Quarterly, 33(1), 101594. https://doi.org/10.1016/j.leaqua.2021.101594
  • Ustunel, Z., & Gunduz, T. (2017). Human-robot collaboration on an assembly work with extended cognition approach. Journal of Advanced Mechanical Design, Systems, and Manufacturing, 11(5), JAMDSM0057. https://doi.org/10.1299/jamdsm.2017jamdsm0057
  • Van Acker, B. B., Parmentier, D. D., Vlerick, P., & Saldien, J. (2018). Understanding mental workload: From a clarifying concept analysis toward an implementable framework. Cognition, Technology & Work, 20(3), 351–365. https://doi.org/10.1007/s10111-018-0481-3
  • Wallace, J. (2021). Getting collaborative robots to work: A study of ethics emerging during the implementation of cobots. Paladyn, Journal of Behavioral Robotics, 12(1), 299–309. https://doi.org/10.1515/pjbr-2021-0019
  • Wang, X. V., Seira, A., & Wang, L. (2018). Classification, personalised safety framework and strategy for human-robot collaboration [Paper presentation]. Proceedings of international conference on computers and industrial engineering, CIE, 2018-Decem. https://www.scopus.com/inward/record.uri?eid=2-s2.0-85061345176&partnerID=40&md5=d35c4fc39b3988eabc4a833f26f2c19c
  • Wang, Z., Yang, L., & Ding, J. (2005). Application of heart rate variability in evaluation of mental workload. Zhonghua Lao Dong Wei Sheng Zhi Ye Bing Za Zhi = Zhonghua Laodong Weisheng Zhiyebing Zazhi = Chinese Journal of Industrial Hygiene and Occupational Diseases, 23(3), 182–184.
  • Warm, S. J., Matthews, G., & Finomore, V. (2008). Vigilance, workload, and stress (pp. 115–141). Performance Under Stress.
  • Welfare, K. S., Hallowell, M. R., Shah, J. A., & Riek, L. D. (2019). Consider the human work experience when integrating robotics in the workplace [Paper presentation]. ACM/IEEE international conference on human-robot interaction, 2019 75–84. https://doi.org/10.1109/HRI.2019.8673139
  • Wickens, C. D., Gordon, S. E., & Liu, Y. (1998). An introduction to human factors engineering. Longman.
  • Wierwille, W. W., Rahimi, M., & Casali, J. G. (1985). Evaluation of 16 measures of mental workload using a simulated flight task emphasizing mediational activity. Human Factors, 27(5), 489–502. https://doi.org/10.1177/001872088502700501
  • Wijnen, L., Bremner, P., Lemaignan, S., & Giuliani, M. (2020). Performing human-robot interaction user studies in virtual reality [Paper presentation]. 2020 29th IEEE international conference on robot and human interactive communication (RO-MAN), 794–794. https://doi.org/10.1109/RO-MAN47096.2020.9223521
  • Wijnen, L., Lemaignan, S., & Bremner, P. (2020). Towards using virtual reality for replicating HRI studies [Paper presentation]. Companion of the 2020 ACM/IEEE international conference on human-robot interaction, 514–516. https://doi.org/10.1145/3371382.3378374
  • Wilson, J. R., & Sharples, S. (2015). Evaluation of Human Work. CRC Press.
  • Wixted, F., & O’Sullivan, L. (2014). The effect of automated manufacturing environments on employee health. Proceedings of the Irish Ergonomics Society Annual Conference, 1, 80–91. Retrieved from https://ihfes.org/wp-content/uploads/2020/03/IESConferenceReview2014Volume1.pdf
  • Woods, D. D. (1996). Decomposing automation: Apparent simplicity, real complexity. In Automation and Human Performance. CRC Press.
  • Wullenkord, R., & Eyssel, F. (2020). Societal and ethical issues in HRI. Current Robotics Reports, 1(3), 85–96. https://doi.org/10.1007/s43154-020-00010-9
  • Young, M. S., Brookhuis, K. A., Wickens, C. D., & Hancock, P. A. (2015). State of science: Mental workload in ergonomics. Ergonomics, 58(1), 1–17. https://doi.org/10.1080/00140139.2014.956151
  • Zanchettin, A. M., Croft, E., Ding, H., & Li, M. (2018). Collaborative robots in the workplace. IEEE Robotics & Automation Magazine, 25(2), 16–17. https://doi.org/10.1109/MRA.2018.2822083
  • Zhao, F., Henrichs, C., & Mutlu, B. (2020, August). Task interdependence in human-robot teaming. In 2020 29th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1143–1149). IEEE.