288
Views
0
CrossRef citations to date
0
Altmetric
Survey Article

Textile-Sensing Wearable Systems for Continuous Motion Angle Estimation: A Systematic Review

ORCID Icon, ORCID Icon, , , , , & ORCID Icon show all
Received 16 Jun 2023, Accepted 25 Oct 2023, Published online: 12 Nov 2023

References

  • Avellar, L., Stefano Filho, C., Delgado, G., Frizera, A., Rocon, E., & Leal-Junior, A. (2022). Ai-enabled photonic smart garment for movement analysis. Scientific Reports, 12(1), 4067. https://doi.org/10.1038/s41598-022-08048-9
  • Babu, A., Aazem, I., Walden, R., Bairagi, S., Mulvihill, D. M., & Pillai, S. C. (2023). Electrospun nanofiber based tengs for wearable electronics and self-powered sensing. Chemical Engineering Journal, 452, 139060. https://doi.org/10.1016/j.cej.2022.139060
  • Bhattarai, R. M., Chhetri, K., Le, N., Acharya, D., Saud, S., Nguyen, M. C. H. P. L., Kim, S. J., & Mok, Y. S. (2023). Oxygen functionalization-assisted anionic exchange toward unique construction of flower-like transition metal chalcogenide embedded carbon fabric for ultra-long life flexible energy storage and conversion. Carbon Energy, e392. https://doi.org/10.1002/cey2.392
  • Caeiro-Rodríguez, M., Otero-González, I., Mikic-Fonte, F. A., & Llamas-Nistal, M. (2021). A systematic review of commercial smart gloves: Current status and applications. Sensors, 21(8), 2667. https://doi.org/10.3390/s21082667
  • Chen, M., Ma, Y., Li, Y., Wu, D., Zhang, Y., & Youn, C. H. (2017). Wearable 2.0: Enabling human-cloud integration in next generation healthcare systems. IEEE Communications Magazine, 55(1), 54–61. https://doi.org/10.1109/MCOM.2017.1600410CM
  • Chen, X., Jiang, X., Fang, J., Guo, S., Lin, J., Liao, M., Luo, G., & Fu, H. (2022). Dispad: Flexible on-body displacement of fabric sensors for robust joint-motion tracking. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 7(1), 1–27. https://doi.org/10.1145/3580832
  • Chen, X., Jiang, X., Zhan, L., Guo, S., Ruan, Q., Luo, G., Liao, M., & Qin, Y. (2024). Full-body human motion reconstruction with sparse joint tracking using flexible sensors. ACM Transactions on Multimedia Computing, Communications, and Applications, 20(2), 1–19. https://doi.org/10.1145/3564700
  • Di Tocco, J., Carnevale, A., Bravi, M., Longo, U. G., Sterzi, S., Massaroni, C., & Schena, E. (2021). Wearable system for elbow angles estimation based on a polymer encapsulated conductive textile. 2021International Workshop on Metrology for Industry 4.0 & IOT (Metroind4. 0&IOT) (pp. 473–477).
  • Di Tocco, J., Carnevale, A., Presti, D. L., Bravi, M., Bressi, F., Miccinilli, S., Sterzi, S., Longo, U. G., Denaro, V., Schena, E., & Massaroni, C. (2021). Wearable device based on a flexible conductive textile for knee joint movements monitoring. IEEE Sensors Journal, 21(23), 26655–26664. https://doi.org/10.1109/JSEN.2021.3122585
  • Dong, K., Peng, X., Cheng, R., Ning, C., Jiang, Y., Zhang, Y., & Wang, Z. L. (2022). Advances in high-performance autonomous energy and self-powered sensing textiles with novel 3d fabric structures. Advanced Materials, 34(21), 2109355. https://doi.org/10.1002/adma.202109355
  • Duan, J., Liu, J., Wang, C., Cai, C., Lyu, L., Sun, L., Wu, X., & Bi, H. (2023). Stretch-tolerant waterproof and self-cleaning CBNPS/graphene strain sensor for multifunctional applications. Advanced Materials Technologies, 8(19), 2300776. 10.1002/admt.202300776
  • Edwards, N. A., Talarico, M. K., Chaudhari, A., Mansfield, C. J., & Oñate, J. (2023). Use of accelerometers and inertial measurement units to quantify movement of tactical athletes: A systematic review. Applied Ergonomics, 109, 103991. https://doi.org/10.1016/j.apergo.2023.103991
  • Esfahani, M. I. M., & Nussbaum, M. A. (2018). A “smart” undershirt for tracking upper body motions: Task classification and angle estimation. IEEE Sensors Journal, 18(18), 7650–7658. https://doi.org/10.1109/JSEN.2018.2859626
  • Fan, W., Zhang, C., Liu, Y., Wang, S., Dong, K., Li, Y., Wu, F., Liang, J., Wang, C., & Zhang, Y. (2023). An ultra-thin piezoelectric nanogenerator with breathable, superhydrophobic, and antibacterial properties for human motion monitoring. Nano Research, 16(9), 11612–11620. https://doi.org/10.1007/s12274-023-5413-8
  • Gemperle, F., Kasabach, C., Stivoric, J., Bauer, M., & Martin, R. (1998). Design for wearability [Paper presentation]. Digest of Papers Second International Symposium on Wearable Computers (Cat. no. 98ex215) (pp. 116–122), Pittsburgh, PA. https://doi.org/10.1109/ISWC.1998.729537
  • Gholami, M., Ejupi, A., Rezaei, A., Ferrone, A., & Menon, C. (2018). Estimation of knee joint angle using a fabric-based strain sensor and machine learning: A preliminary investigation [Paper presentation]. 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob) (pp. 589–594). Enschede, The Netherlands. https://doi.org/10.1109/BIOROB.2018.8487199
  • Gholami, M., Rezaei, A., Cuthbert, T. J., Napier, C., & Menon, C. (2019). Lower body kinematics monitoring in running using fabric-based wearable sensors and deep convolutional neural networks. Sensors, 19(23), 5325. https://doi.org/10.3390/s19235325
  • Grassi, A., Cecchi, F., Maselli, M., Röling, M., Laschi, C., & Cianchetti, M. (2017). Warp-knitted textile as a strain sensor: Characterization procedure and application in a comfortable wearable goniometer. IEEE Sensors Journal, 17(18), 5927–5936. https://doi.org/10.1109/JSEN.2017.2736944
  • Gravina, R., Alinia, P., Ghasemzadeh, H., & Fortino, G. (2017). Multi-sensor fusion in body sensor networks: State-of-the-art and research challenges. Information Fusion, 35, 68–80. https://doi.org/10.1016/j.inffus.2016.09.005
  • Greinke, B., Petri, G., Vierne, P., Biessmann, P., Börner, A., Schleiser, K., Baccelli, E., Krause, C., Verworner, C., & Biessmann, F. (2021). An interactive garment for orchestra conducting: IOT-enabled textile & machine learning to direct musical performance [Paper presentation]. Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction (pp. 1–6), Salzburg, Austria. https://doi.org/10.1145/3430524.3442451
  • Gupta, U., Lau, J. L., Ahmed, A., Chia, P. Z., Soh, G. S., & Low, H. Y. (2021). Soft wearable knee brace with embedded sensors for knee motion monitoring [Paper presentation]. 2021 43rd Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC) (pp. 7348–7351). Mexico.
  • Gupta, U., Lau, J. L., Chia, P. Z., Tan, Y. Y., Ahmed, A., Tan, N. C., Soh, G. S., & Low, H. Y. (2023). All knitted and integrated soft wearable of high stretchability and sensitivity for continuous monitoring of human joint motion. Advanced Healthcare Materials, 12(21), e2202987. https://doi.org/10.1002/adhm.202202987
  • Homayounfar, S. Z., & Andrew, T. L. (2020). Wearable sensors for monitoring human motion: A review on mechanisms, materials, and challenges. SLAS Technology, 25(1), 9–24. https://doi.org/10.1177/2472630319891128
  • Hu, S., Dai, M., Dong, T., & Liu, T. (2019). A textile sensor for long durations of human motion capture. Sensors, 19(10), 2369. https://doi.org/10.3390/s19102369
  • Hu, X., Yang, F., Wu, M., Sui, Y., Guo, D., Li, M., Kang, Z., Sun, J., & Liu, J. (2022). A super-stretchable and highly sensitive carbon nanotube capacitive strain sensor for wearable applications and soft robotics. Advanced Materials Technologies, 7(3), 2100769. https://doi.org/10.1002/admt.202100769
  • Huang, F., Hu, J., & Yan, X. (2022). Review of fiber-or yarn-based wearable resistive strain sensors: Structural design, fabrication technologies and applications. Textiles, 2(1), 81–111. https://doi.org/10.3390/textiles2010005
  • Hwang, S., Kang, M., Lee, A., Bae, S., Lee, S. K., Lee, S. H., Lee, T., Wang, G., & Kim, T. W. (2022). Integration of multiple electronic components on a microfibre towards an emerging electronic textile platform. Nature Communications, 13(1), 3173. https://doi.org/10.1038/s41467-022-30894-4
  • Islam, G. N., Ali, A., & Collie, S. (2020). Textile sensors for wearable applications: A comprehensive review. Cellulose, 27(11), 6103–6131. https://doi.org/10.1007/s10570-020-03215-5
  • Jiang, C., Lai, C. L., Xu, B., So, M. Y., & Li, Z. (2022). Fabric-rebound triboelectric nanogenerators with loops and layered structures for energy harvesting and intelligent wireless monitoring of human motions. Nano Energy, 93, 106807. https://doi.org/10.1016/j.nanoen.2021.106807
  • Jin, C., & Bai, Z. (2022). Mxene-based textile sensors for wearable applications. ACS Sensors, 7(4), 929–950. https://doi.org/10.1021/acssensors.2c00097
  • Jin, Y., Glover, C. M., Cho, H., Araromi, O. A., Graule, M. A., Li, N., Wood, R. J., & Walsh, C. J. (2020). Soft sensing shirt for shoulder kinematics estimation [Paper presentation]. 2020 IEEE International Conference on Robotics and Automation (ICRA) (pp. 4863–4869). Paris, France. https://doi.org/10.1109/ICRA40945.2020.9196586
  • Kim, J. H., Patil, S. D., Matson, S., Conroy, M., & Kao, C. H. L. (2022). Knitskin: Machine-knitted scaled skin for locomotion [Paper presentation]. Chi Conference on Human Factors in Computing Systems (pp. 1–15). https://doi.org/10.1145/3491102.3502142
  • Kim, K. K., Kim, M., Pyun, K., Kim, J., Min, J., Koh, S., Root, S. E., Kim, J., Nguyen, B.-N T., Nishio, Y., Han, S., Choi, J., Kim, C. Y., Tok, J. B. H., Jo, S., Ko, S. H., & Bao, Z. (2022). A substrate-less nanomesh receptor with meta-learning for rapid hand task recognition. Nature Electronics, 6(1), 64–75. https://doi.org/10.1038/s41928-022-00888-7
  • Kim, S., Kim, J. H., & Park, J. W. (2017). Wearable and transparent capacitive strain sensor with high sensitivity based on patterned ag nanowire networks. ACS Applied Materials & Interfaces, 9(31), 26407–26416. https://doi.org/10.1021/acsami.7b06474
  • Lau, J. L., & Soh, G. S. (2020). Characterisation, design and experimentation of a fabric based wearable joint sensing device [Paper presentation]. International Design Engineering Technical Conferences and Computers and Information in Engineering Conference (Vol. 83990, p. V010T10A040).
  • Li, M., Li, Z., Qu, L., Chen, F., & Tian, M. (2022). Recent progress of the active materials with various micro-structures for flexible textile-based supercapacitors. Advanced Fiber Materials, 4(5), 1005–1026. https://doi.org/10.1007/s42765-022-00166-3
  • Li, M., Li, Z., Ye, X., He, W., Qu, L., & Tian, M. (2023). A smart self-powered rope for water/fire rescue. Advanced Functional Materials, 33(3), 2210111. https://doi.org/10.1002/adfm.202210111
  • Li, M., Li, Z., Ye, X., Zhang, X., Qu, L., & Tian, M. (2021). Tendril-inspired 900% ultrastretching fiber-based ZN-ion batteries for wearable energy textiles. ACS Applied Materials & Interfaces, 13(14), 17110–17117. https://doi.org/10.1021/acsami.1c02329
  • Li, Z., Li, M., Fan, Q., Qi, X., Qu, L., & Tian, M. (2021). Smart-fabric-based supercapacitor with long-term durability and waterproof properties toward wearable applications. ACS Applied Materials & Interfaces, 13(12), 14778–14785. https://doi.org/10.1021/acsami.1c02329
  • Liang, A., Stewart, R., Freire, R., & Bryan-Kinns, N. (2021). Knit stretch sensor placement for body movement sensing [Paper presentation]. Proceedings of the Fifteenth International Conference on Tangible, Embedded, and Embodied Interaction (pp. 1–7). Association for Computing Machinery.
  • Libanori, A., Chen, G., Zhao, X., Zhou, Y., & Chen, J. (2022). Smart textiles for personalized healthcare. Nature Electronics, 5(3), 142–156. https://doi.org/10.1038/s41928-022-00723-z
  • Liu, Q., Zhang, Y., Sun, X., Liang, C., Han, Y., Wu, X., & Wang, Z. (2023). All textile-based robust pressure sensors for smart garments. Chemical Engineering Journal, 454, 140302. https://doi.org/10.1016/j.cej.2022.140302
  • Liu, R., Shao, Q., Wang, S., Ru, C., Balkcom, D., & Zhou, X. (2019). Reconstructing human joint motion with computational fabrics. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 3(1), 1–26. https://doi.org/10.1145/3314406
  • Liu, X., Miao, J., Fan, Q., Zhang, W., Zuo, X., Tian, M., Zhu, S., Zhang, X., & Qu, L. (2022). Recent progress on smart fiber and textile based wearable strain sensors: Materials, fabrications and applications. Advanced Fiber Materials, 4(3), 361–389. https://doi.org/10.1007/s42765-021-00126-3
  • Liu, Z., Li, C., Zhang, X., Zhou, B., Wen, S., Zhou, Y., Chen, S., Jiang, L., Jerrams, S., & Zhou, F. (2022). Biodegradable polyurethane fiber-based strain sensor with a broad sensing range and high sensitivity for human motion monitoring. ACS Sustainable Chemistry & Engineering, 10(27), 8788–8798. https://doi.org/10.1021/acssuschemeng.2c01171
  • Lopez-Nava, I. H., & Munoz-Melendez, A. (2016). Wearable inertial sensors for human motion analysis: A review. IEEE Sensors Journal, 16(22), 7821–7834. https://doi.org/10.1109/JSEN.2016.2609392
  • Maselli, M., Mussi, E., Cecchi, F., Manti, M., Tropea, P., & Laschi, C. (2018). A wearable sensing device for monitoring single planes neck movements: Assessment of its performance. IEEE Sensors Journal, 18(15), 6327–6336. https://doi.org/10.1109/JSEN.2018.2847454
  • Mattmann, C., Amft, O., Harms, H., Troster, G., & Clemens, F. (2007). Recognizing upper body postures using textile strain sensors [Paper presentation]. 2007 11th IEEE International Symposium on Wearable Computers (pp. 29–36), Boston, MA.
  • Mattmann, C., Clemens, F., & Tröster, G. (2008). Sensor for measuring strain in textile. Sensors (Basel, Switzerland), 8(6), 3719–3732. https://doi.org/10.3390/s8063719
  • McLaren, R., Joseph, F., Baguley, C., & Taylor, D. (2016). A review of e-textiles in neurological rehabilitation: How close are we? Journal of Neuroengineering and Rehabilitation, 13(1), 59. https://doi.org/10.1186/s12984-016-0167-0
  • Mokhlespour Esfahani, M. I., Zobeiri, O., Moshiri, B., Narimani, R., Mehravar, M., Rashedi, E., & Parnianpour, M. (2017). Trunk motion system (tms) using printed body worn sensor (bws) via data fusion approach. Sensors, 17(12), 112. https://doi.org/10.3390/s17010112
  • Nesser, H., & Lubineau, G. (2021). Strain sensing by electrical capacitive variation: From stretchable materials to electronic interfaces. Advanced Electronic Materials, 7(10), 2100190. https://doi.org/10.1002/aelm.202100190
  • Nikolova, E., Gieva, E., & Nikolov, G. (2021). Research and analysis of washability of textile electrodes [Paper presentation]. 2021 44th International Spring Seminar on Electronics Technology (Isse) (pp. 1–5). Bautzen, Germany. https://doi.org/10.1109/ISSE51996.2021.9467664
  • Olwal, A., Moeller, J., Priest-Dorman, G., Starner, T., Carroll, B. (2018). I/o braid: Scalable touch-sensitive lighted cords using spiraling, repeating sensing textiles and fiber optics. Proceedings of the 31st Annual ACM Symposium on User Interface Software and Technology (pp. 485–497).
  • Padhy, S. (2021). A tensor-based approach using multilinear SVD for hand gesture recognition from SEMG signals. IEEE Sensors Journal, 21(5), 6634–6642. https://doi.org/10.1109/JSEN.2020.3042540
  • Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The prisma 2020 statement: An updated guideline for reporting systematic reviews. Systematic Reviews, 10(1), 89. https://doi.org/10.1186/s13643-021-01626-4
  • Pan, D., Liu, H., Qu, D., & Zhang, Z. (2020). Human falling detection algorithm based on multisensor data fusion with SVM. Mobile Information Systems, 2020, 1–9. https://doi.org/10.1155/2020/8826088
  • Poitras, I., Dupuis, F., Bielmann, M., Campeau-Lecours, A., Mercier, C., Bouyer, L. J., & Roy, J.-S. (2019). Validity and reliability of wearable sensors for joint angle estimation: A systematic review. Sensors, 19(7), 1555. https://doi.org/10.3390/s19071555
  • Poomsalood, S., Muthumayandi, K., & Hambly, K. (2019). Can stretch sensors measure knee range of motion in healthy adults? Biomedical Human Kinetics, 11(1), 1–8. https://doi.org/10.2478/bhk-2019-0001
  • Pyo, S., Lee, J., Bae, K., Sim, S., & Kim, J. (2021). Recent progress in flexible tactile sensors for human-interactive systems: From sensors to advanced applications. Advanced Materials, 33(47), 2005902. https://doi.org/10.1002/adma.202005902
  • Qiu, S., Hao, Z., Wang, Z., Liu, L., Liu, J., Zhao, H., & Fortino, G. (2022). Sensor combination selection strategy for kayak cycle phase segmentation based on body sensor networks. IEEE Internet of Things Journal, 9(6), 4190–4201. https://doi.org/10.1109/JIOT.2021.3102856
  • Qiu, S., Zhao, H., Jiang, N., Wang, Z., Liu, L., An, Y., Zhao, H., Miao, X., Liu, R., & Fortino, G. (2022). Multi-sensor information fusion based on machine learning for real applications in human activity recognition: State-of-the-art and research challenges. Information Fusion, 80, 241–265. https://www.sciencedirect.com/science/article/pii/S1566253521002311 https://doi.org/10.1016/j.inffus.2021.11.006
  • Rezaei, A., Cuthbert, T. J., Gholami, M., & Menon, C. (2019). Application-based production and testing of a core–sheath fiber strain sensor for wearable electronics: Feasibility study of using the sensors in measuring tri-axial trunk motion angles. Sensors, 19(19), 4288. https://doi.org/10.3390/s19194288
  • Robinson, F., Cen, Z., Naguib, H., & Nejat, G. (2022). Socially assistive robotics and wearable sensors for intelligent user dressing assistance [Paper presentation]. 2022 31st IEEE International Conference on Robot and Human Interactive Communication (Ro-Man) (pp. 829–836), Napoli, Italy.
  • Ru, X., Zhang, C., & Zhang, H. (2023). A method of hybrid fabric and inertial sensor for human posture perception [Paper presentation]. 2023 26th International Conference on Computer Supported Cooperative Work in Design (CSCWD) (pp. 1484–1489), Rio de Janeiro, Brazil.
  • Schmool, D., & Markó, D. (2018). Magnetism in solids: Hysteresis. Reference module in materials science and materials engineering. Elsevier. https://www.sciencedirect.com/science/article/pii/B9780128035818114134 https://doi.org/10.1016/B978-0-12-803581-8.11413-4
  • Semjonova, G., Vetra, J., Cauce, V., Oks, A., Katashev, A., & Eizentals, P. (2020). Improving the recovery of patients with subacromial pain syndrome with the daid smart textile shirt. Sensors, 20(18), 5277. https://doi.org/10.3390/s20185277
  • Seyedin, S., Zhang, P., Naebe, M., Qin, S., Chen, J., Wang, X., & Razal, J. M. (2019). Textile strain sensors: A review of the fabrication technologies, performance evaluation and applications. Materials Horizons, 6(2), 219–249. https://doi.org/10.1039/C8MH01062E
  • Seymour, S. (2008). Fashionable technology: The intersection of design, fashion, science, and technology. Springer.
  • Shak Sadi, M., & Kumpikaitė, E. (2022). Advances in the robustness of wearable electronic textiles: Strategies, stability, washability and perspective. Nanomaterials, 12(12), 2039. https://doi.org/10.3390/nano12122039
  • Shi, J., Liu, S., Zhang, L., Yang, B., Shu, L., Yang, Y., Ren, M., Wang, Y., Chen, J., Chen, W., Chai, Y., & Tao, X. (2020). Smart textile-integrated microelectronic systems for wearable applications. Advanced Materials, 32(5), 1901958. https://doi.org/10.1002/adma.201901958
  • Shi, Q., Sun, J., Hou, C., Li, Y., Zhang, Q., & Wang, H. (2019). Advanced functional fiber and smart textile. Advanced Fiber Materials, 1(1), 3–31. https://doi.org/10.1007/s42765-019-0002-z
  • Shuvo, I. I., Shah, A., & Dagdeviren, C. (2022). Electronic textile sensors for decoding vital body signals: State-of-the-art review on characterizations and recommendations. Advanced Intelligent Systems, 4(4), 2100223. https://doi.org/10.1002/aisy.202100223
  • Skach, S., Stewart, R., Healey, P. G. (2018). Smart arse: Posture classification with textile sensors in trousers. In Proceedings of the 20th ACM International Conference on Multimodal Interaction (pp. 116–124). Association for Computing Machinery.
  • Tajitsu, Y. (2020). Development of e-textile sewn together with embroidered fabric having motion-sensing function using piezoelectric braided cord for embroidery. IEEE Transactions on Dielectrics and Electrical Insulation, 27(5), 1644–1649. https://doi.org/10.1109/TDEI.2020.008448
  • Tan, T., Gatti, A. A., Fan, B., Shea, K. G., Sherman, S. L., Uhlrich, S. D., Hicks, J. L., Delp, S. L., Shull, P. B., & Chaudhari, A. S. (2023). A scoping review of portable sensing for out-of-lab anterior cruciate ligament injury prevention and rehabilitation. NPJ Digital Medicine, 6(1), 46. https://doi.org/10.1038/s41746-023-00782-2
  • Tavassolian, M., Cuthbert, T. J., Napier, C., Peng, J., & Menon, C. (2020). Textile-based inductive soft strain sensors for fast frequency movement and their application in wearable devices measuring multiaxial hip joint angles during running. Advanced Intelligent Systems, 2(4), 1900165. https://doi.org/10.1002/aisy.201900165
  • Tepe, J., Gollob, E., Escudero, J. A., & Bastani, A. (2023). Intra-acting body and textile expressions becoming with digital movement translation: Exploring relational expressions of the body and textiles using a human-robot-textile installation [Paper presentation]. Extended Abstracts of the 2023 Chi Conference on Human Factors in Computing Systems (pp. 1–11), Hamburg, Germany.
  • Tibbits, S. (n.d). Dava Newman presents 3D Knit BioSuitTM at 2022 MARS conference. https://www.media.mit.edu/posts/dava-newman-presents-3d-knit-biosuit-at-mars-conference/
  • Tolba, A., & Al-Makhadmeh, Z. (2020). Wearable sensor-based fuzzy decision-making model for improving the prediction of human activities in rehabilitation. Measurement, 166, 108254. https://doi.org/10.1016/j.measurement.2020.108254
  • Tormene, P., Bartolo, M., De Nunzio, A. M., Fecchio, F., Quaglini, S., Tassorelli, C., & Sandrini, G. (2012). Estimation of human trunk movements by wearable strain sensors and improvement of sensor’s placement on intelligent biomedical clothes. Biomedical Engineering Online, 11(1), 95. https://doi.org/10.1186/1475-925X-11-95
  • Totaro, M., Poliero, T., Mondini, A., Lucarotti, C., Cairoli, G., Ortiz, J., & Beccai, L. (2017). Soft smart garments for lower limb joint position analysis. Sensors, 17(10), 2314. https://doi.org/10.3390/s17102314
  • Van der Kruk, E., & Reijne, M. M. (2018). Accuracy of human motion capture systems for sport applications; state-of-the-art review. European Journal of Sport Science, 18(6), 806–819. https://doi.org/10.1080/17461391.2018.1463397
  • Vu, L. Q., Kim, K. H., Schulze, L. J., & Rajulu, S. L. (2020). Lumbar posture assessment with fabric strain sensors. Computers in Biology and Medicine, 118, 103624. https://doi.org/10.1016/j.compbiomed.2020.103624
  • Wan, X., Cong, H., Jiang, G., Liang, X., Liu, L., & He, H. (2023). A review on PVDF nanofibers in textiles for flexible piezoelectric sensors. ACS Applied Nano Materials, 6(3), 1522–1540. https://doi.org/10.1021/acsanm.2c04916
  • Wang, J., Lu, C., & Zhang, K. (2020). Textile-based strain sensor for human motion detection. Energy & Environmental Materials, 3(1), 80–100. https://doi.org/10.1002/eem2.12041
  • Wang, Q., Ye, Y., Bhömer, M. t., Jiang, M., & Sun, X. (2021). Seasons: Exploring the dynamic thermochromic smart textile applications for intangible cultural heritage revitalization [Paper presentation]. IFIP Conference on Human-Computer Interaction (pp. 92–99), Bari, Italy.
  • Wang, X., Deng, Y., Jiang, P., Chen, X., & Yu, H. (2022). Low-hysteresis, pressure-insensitive, and transparent capacitive strain sensor for human activity monitoring. Microsystems & Nanoengineering, 8(1), 113. https://doi.org/10.1038/s41378-022-00450-7
  • Wang, X., Yang, B., Li, Q., Wang, F., & Tao, X. M. (2021). Modeling the stress and resistance relaxation of conductive composites-coated fabric strain sensors. Composites Science and Technology, 204, 108645. https://doi.org/10.1016/j.compscitech.2021.108645
  • Watson, A., Sun, M., Pendyal, S., & Zhou, G. (2020). Tracknee: Knee angle measurement using stretchable conductive fabric sensors. Smart Health, 15, 100092. https://doi.org/10.1016/j.smhl.2019.100092
  • Wei, C., Cheng, R., Ning, C., Wei, X., Peng, X., Lv, T., Sheng, F., Dong, K., & Wang, Z. L. (2023). A self-powered body motion sensing network integrated with multiple triboelectric fabrics for biometric gait recognition and auxiliary rehabilitation training. Advanced Functional Materials, 33(35), 2303562. https://doi.org/10.1002/adfm.202303562
  • Wen, F., Sun, Z., He, T., Shi, Q., Zhu, M., Zhang, Z., Li, L., Zhang, T., & Lee, C. (2020). Machine learning glove using self-powered conductive superhydrophobic triboelectric textile for gesture recognition in VR/AR applications. Advanced Science, 7(14), 2000261. https://doi.org/10.1002/advs.202000261
  • Wu, G., Siegler, S., Allard, P., Kirtley, C., Leardini, A., Rosenbaum, D., Whittle, M., D'Lima, D. D., Cristofolini, L., Witte, H., Schmid, O., Stokes, I., & Standardization and Terminology Committee of the International Society of Biomechanics. (2002). ISB recommendation on definitions of joint coordinate system of various joints for the reporting of human joint motion—part i: Ankle, hip, and spine. Journal of Biomechanics, 35(4), 543–548. https://doi.org/10.1002/advs.202000261
  • Wu, G., van der Helm, F. C. T., Veeger, H. E. J. D., Makhsous, M., Van Roy, P., Anglin, C., Nagels, J., Karduna, A. R., McQuade, K., Wang, X., Werner, F. W., Buchholz, B., & International Society of Biomechanics. (2005). ISB recommendation on definitions of joint coordinate systems of various joints for the reporting of human joint motion—part ii: Shoulder, elbow, wrist and hand. Journal of Biomechanics, 38(5), 981–992. https://doi.org/10.1016/j.jbiomech.2004.05.042
  • Xiong, J., Chen, J., & Lee, P. S. (2021). Functional fibers and fabrics for soft robotics, wearables, and human–robot interface. Advanced Materials, 33(19), 2002640. https://doi.org/10.1002/adma.202002640
  • Xu, R., She, M., Liu, J., Zhao, S., Zhao, J., Zhang, X., Qu, L., & Tian, M. (2023). Skin-friendly and wearable iontronic touch panel for virtual-real handwriting interaction. ACS Nano, 17(9), 8293–8302. https://doi.org/10.1021/acsnano.2c12612
  • Yang, T., Jiang, X., Zhong, Y., Zhao, X., Lin, S., Li, J., Li, X., Xu, J., Li, Z., & Zhu, H. (2017). A wearable and highly sensitive graphene strain sensor for precise home-based pulse wave monitoring. ACS Sensors, 2(7), 967–974. https://doi.org/10.1021/acssensors.7b00230
  • Yu, R., Zhu, C., Wan, J., Li, Y., & Hong, X. (2021). Review of graphene-based textile strain sensors, with emphasis on structure activity relationship. Polymers, 13(1), 151. https://doi.org/10.3390/polym13010151
  • Yuan, G., Liu, X., Yan, Q., Qiao, S., Wang, Z., & Yuan, L. (2020). Hand gesture recognition using deep feature fusion network based on wearable sensors. IEEE Sensors Journal, 21(1), 1–1. https://doi.org/10.1109/JSEN.2020.3014276
  • Zhai, K., Wang, H., Ding, Q., Wu, Z., Ding, M., Tao, K., Yang, B. R., Xie, X., Li, C., & Wu, J. (2023). High-performance strain sensors based on organohydrogel microsphere film for wearable human-computer interfacing. Advanced Science, 10(6), e2205632. https://doi.org/10.1002/advs.202205632
  • Zhang, Z., He, T., Zhu, M., Sun, Z., Shi, Q., Zhu, J., Dong, B., Yuce, M. R., & Lee, C. (2020). Deep learning-enabled triboelectric smart socks for IOT-based gait analysis and VR applications. NPJ Flexible Electronics, 4(1), 29. https://doi.org/10.1038/s41528-020-00092-7
  • Zhou, B., Geissler, D., Faulhaber, M., Gleiss, C. E., Zahn, E. F., Ray, L. S. S., Gamarra, D., Rey, V. F., Suh, S., Bian, S., Joost, G., & Lukowicz, P. (2022). Mocapose: Motion capturing with textile-integrated capacitive sensors in loose-fitting smart garments. Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, 7(1), 1–40. https://doi.org/10.1145/3580883
  • Zhou, L., Shen, W., Liu, Y., & Zhang, Y. (2022). A scalable durable and seamlessly integrated knitted fabric strain sensor for human motion tracking. Advanced Materials Technologies, 7(10), 2200082. https://doi.org/10.1002/admt.202200082
  • Zhu, Z., Guo, S., Qin, Y., Chen, X., Wu, R., Shi, Y., Liu, X., & Liao, M. (2021). Robust elbow angle prediction with aging soft sensors via output-level domain adaptation. IEEE Sensors Journal, 21(20), 22976–22984. https://doi.org/10.1109/JSEN.2021.3091004
  • Zou, X., Li, X., Xue, J., & Lai, K. W. C. (2023). Detection of lower-limb motion using a kneepad sensor based on textile strain sensor [Paper presentation]. 2023 IEEE 18th International Conference on Nano/Micro Engineered and Molecular Systems (NEMS) (pp. 161–164).

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.