1,440
Views
0
CrossRef citations to date
0
Altmetric
Research Report

Enhancing Human–Computer Interaction in Online Education: A Machine Learning Approach to Predicting Student Emotion and Satisfaction

ORCID Icon &
Received 25 Jun 2023, Accepted 30 Nov 2023, Published online: 19 Dec 2023

References

  • Abdelkader, H. E., Gad, A. G., Abohany, A. A., & Sorour, S. E. (2022). An efficient data mining technique for assessing satisfaction level with online learning for higher education students during the COVID-19. IEEE Access, 10, 6286–6303. https://doi.org/10.1109/ACCESS.2022.3143035
  • Adedoyin, O. B., & Soykan, E. (2023). Covid-19 pandemic and online learning: The challenges and opportunities. Interactive Learning Environments, 31(2), 863–875. https://doi.org/10.1080/10494820.2020.1813180
  • Aggrawal, R., & Pal, S. (2021). Elimination and backward selection of features (P-value technique) in prediction of heart disease by using machine learning algorithms. Turkish Journal of Computer and Mathematics Education (TURCOMAT), 12(6), 2650–2665. https://doi.org/10.17762/turcomat.v12i6.5765
  • Akour, I. A., Al-Maroof, R. S., Alfaisal, R., & Salloum, S. A. (2022). A conceptual framework for determining Metaverse adoption in higher institutions of gulf area: An empirical study using hybrid SEM-ANN approach. Computers and Education: Artificial Intelligence, 3, 100052. https://doi.org/10.1016/j.caeai.2022.100052
  • Alenezi, A. R. (2022). Modeling the social factors affecting students’ satisfaction with online learning: A structural equation modeling approach. Education Research International, 2022, 1–13. https://doi.org/10.1155/2022/2594221
  • Alhothali, A., Albsisi, M., Assalahi, H., & Aldosemani, T. (2022). Predicting student outcomes in online courses using machine learning techniques: A review. Sustainability, 14(10), 6199. https://doi.org/10.3390/su14106199
  • Ally, M. (2019). Competency profile of the digital and online teacher in future education. The International Review of Research in Open and Distributed Learning, 20(2), 302–318. https://doi.org/10.19173/irrodl.v20i2.4206
  • Alnagar, D. K. F. (2020). Using artificial neural network to predicted student satisfaction in e-learning. American Journal of Applied Mathematics and Statistics, 8(3), 90–95. https://doi.org/10.12691/ajams-8-3-2
  • Alsariera, Y. A., Baashar, Y., Alkawsi, G., Mustafa, A., Alkahtani, A. A., & Ali, N. A. (2022). Assessment and evaluation of different machine learning algorithms for predicting student performance. Computational Intelligence and Neuroscience, 2022, 4151487. https://doi.org/10.1155/2022/4151487
  • Altrabsheh, N., Cocea, M., & Fallahkhair, S. (2015). Predicting students’ emotions using machine learning techniques. In C. Conati, N. Heffernan, A. Mitrovic, M. Verdejo (Eds.), Artificial Intelligence in Education. AIED 2015. Lecture Notes in Computer Science (Vol. 9112). Springer. https://doi.org/10.1007/978-3-319-19773-9_56
  • Arpaci, I., Karatas, K., Kusci, I., & Al-Emran, M. (2022). Understanding the social sustainability of the Metaverse by integrating UTAUT2 and big five personality traits: A hybrid SEM-ANN approach. Technology in Society, 71, 102120. https://doi.org/10.1016/j.techsoc.2022.102120
  • Azizan, S., Lee, A., Crosling, G., Atherton, G., Arulanandam, B., Lee, C., & Rahim, R. A. (2022). Online learning and COVID-19 in higher education: The value of IT models in assessing students’ satisfaction. International Journal of Emerging Technologies in Learning (iJET), 17(3), 245–278. https://doi.org/10.3991/ijet.v17i03.24871
  • Baashar, Y., Alkawsi, G., Mustafa, A., Alkahtani, A. A., Alsariera, Y. A., Ali, A. Q., Hashim, W., & Tiong, S. K. (2022). Toward predicting student’s academic performance using artificial neural networks (ANNs). Applied Sciences, 12(3), 1289. https://doi.org/10.3390/app12031289
  • Batdı, V., Doğan, Y., & Talan, T. (2021). Effectiveness of online learning: A multi-complementary approach research with responses from the COVID-19 pandemic period. Interactive Learning Environments, 31(7), 4113–4146. https://doi.org/10.1080/10494820.2021.1954035
  • Bhutto, E. S., Siddiqui, I. F., Arain, Q. A., & Anwar, M. (2020). Predicting students’ academic performance through supervised machine learning. In 2020 International Conference on Information Science and Communication Technology (ICISCT) (pp. 1–6). IEEE. https://doi.org/10.1109/ICISCT49550.2020.9080033
  • Dejaeger, K., Goethals, F., Giangreco, A., Mola, L., & Baesens, B. (2012). Gaining insight into student satisfaction using comprehensible data mining techniques. European Journal of Operational Research, 218(2), 548–562. https://doi.org/10.1016/j.ejor.2011.11.022
  • Dogan, M. E., Goru Dogan, T., & Bozkurt, A. (2023). The use of artificial intelligence (AI) in online learning and distance education processes: A systematic review of empirical studies. Applied Sciences, 13(5), 3056. https://doi.org/10.3390/app13053056
  • Donohue, T. L., & Wong, E. H. (1997). Achievement motivation and college satisfaction in traditional and nontraditional students. Education, 118(2), 237–244. https://link.gale.com/apps/doc/A20479498/AONE?u=googlescholar&sid=bookmark-AONE&xid=af7cef96
  • Du Boulay, B. (2016). Artificial intelligence as an effective classroom assistant. IEEE Intelligent Systems, 31(6), 76–81. https://doi.org/10.1109/MIS.2016.93
  • Elfaki, N. K., Abdulraheem, I., & Abdulrahim, R. (2019). Impact of e-learning vs traditional learning on student’s performance and attitude. International Journal of Medical Research & Health Sciences, 8(10), 76–82. https://www.ijmrhs.com/medical-research/impact-of-elearning-vs-traditional-learning-on-students-performance-and-attitude.pdf
  • George, D., & Mallery, P. (2021). IBM SPSS Statistics 27 step by step: A simple guide and reference (17th ed.). Routledge. https://doi.org/10.4324/9781003205333
  • Gibson, J., Atkins, D. C., Creed, T. A., Imel, Z., Georgiou, P., & Narayanan, S. (2022). Multi-label multi-task deep learning for behavioral coding. IEEE Transactions on Affective Computing, 13(1), 508–518. https://doi.org/10.1109/TAFFC.2019.2952113
  • Ha, D. T., Loan, P. T. T., Giap, C. N., & Huong, N. T. L. (2020). An empirical study for student academic performance prediction using machine learning techniques. International Journal of Computer Science and Information Security (IJCSIS), 18(3), 21–28. https://www.researchgate.net/publication/340351775_An_Empirical_Study_for_Student_Academic_Performance_Prediction_Using_Machine_Learning_Techniques
  • Ho, I. M. K., Cheong, K. Y., & Weldon, A. (2021). Predicting student satisfaction of emergency remote learning in higher education during COVID-19 using machine learning techniques. PLOS One, 16(4), e0249423. https://doi.org/10.1371/journal.pone.0249423
  • Hossin, M., & Sulaiman, M. N. (2015). A review on evaluation metrics for data classification evaluations. International Journal of Data Mining & Knowledge Management Process, 5(2), 1–11. https://doi.org/10.5121/ijdkp.2015.5201
  • Iqbal, M., & Varshney, M. (2022). Developed model for analyzing perception of learner for digitize education during COVID19 using machine learning. International Journal of Mechanical Engineering, 7(4), 553–563. https://kalaharijournals.com/resources/APRIL_68.pdf
  • Kaddoura, S., Popescu, D. E., & Hemanth, J. D. (2022). A systematic review on machine learning models for online learning and examination systems. PeerJ. Computer Science, 8, e986. https://doi.org/10.7717/peerj-cs.986
  • Kamel, H., Abdulah, D., & Al-Tuwaijari, J. M. (2019). Cancer classification using Gaussian Naive Bayes algorithm. In 2019 International Engineering Conference (IEC) (pp. 165–170). IEEE. https://doi.org/10.1109/IEC47844.2019.8950650
  • Kauffman, H. (2015). A review of predictive factors of student success in and satisfaction with online learning. Research in Learning Technology, 23. https://doi.org/10.3402/rlt.v23.26507
  • Kurani, A., Doshi, P., Vakharia, A., & Shah, M. (2023). A comprehensive comparative study of artificial neural network (ANN) and support vector machines (SVM) on stock forecasting. Annals of Data Science, 10(1), 183–208. https://doi.org/10.1007/s40745-021-00344-x
  • Lahbib, K., el Akkad, N., Satori, H., & Satori, K. (2023). A feature selection approach based on Archimedes’ optimization algorithm for optimal data classification. International Journal of Interactive Multimedia and Artificial Intelligence (In Press). https://doi.org/10.9781/ijimai.2023.01.005
  • Li, J., Cheng, K., Wang, S., Morstatter, F., Trevino, R. P., Tang, J., & Liu, H. (2017). Feature selection: A data perspective. ACM Computing Surveys, 50(6), 1–45. https://doi.org/10.1145/3136625
  • Li, X., & Asante, I. K. (2021). International students expectations from online education in Chinese universities: Student-centered approach. International Journal of Social Sciences & Educational Studies, 8(1), 113–123. https://doi.org/10.23918/ijsses.v8i1p113
  • Liu, X., & Ardakani, S. P. (2022). A machine learning enabled affective E-learning system model. Education and Information Technologies, 27(7), 9913–9934. https://doi.org/10.1007/s10639-022-11010-x
  • Lo, P.-S., Dwivedi, Y. K., Wei-Han Tan, G., Ooi, K.-B., Cheng-Xi Aw, E., & Metri, B. (2022). Why do consumers buy impulsively during live streaming? A deep learning-based dual-stage SEM-ANN analysis. Journal of Business Research, 147, 325–337. https://doi.org/10.1016/j.jbusres.2022.04.013
  • Lu, D.-N., Le, H.-Q., & Vu, T.-H. (2020). The factors affecting acceptance of e-learning: A machine learning algorithm approach. Education Sciences, 10(10), 270. https://doi.org/10.3390/educsci10100270
  • Luaces, O., Díez, J., Barranquero, J., del Coz, J. J., & Bahamonde, A. (2012). Binary relevance efficacy for multilabel classification. Progress in Artificial Intelligence, 1(4), 303–313. https://doi.org/10.1007/s13748-012-0030-x
  • Lundberg, S. M., & Lee, S.-I. (2017). A unified approach to interpreting model predictions. Advances in Neural Information Processing Systems, 30, 4765–4774. https://doi.org/10.48550/arXiv.1705.07874
  • Masa’deh, R., Almajali, D., Alrowwad, A., Alkhawaldeh, R., Khwaldeh, S., & Obeidat, B. (2023). Evaluation of factors affecting university students’ satisfaction with e-learning systems used during Covid-19 crisis: A field study in Jordanian higher education institutions. International Journal of Data and Network Science, 7(1), 199–214. https://doi.org/10.5267/j.ijdns.2022.11.003
  • Mehmood, M., Alshammari, N., Alanazi, S. A., & Ahmad, F. (2022). Systematic framework to predict early-stage liver carcinoma using hybrid of feature selection techniques and regression techniques. Complexity, 2022, 1–11. https://doi.org/10.1155/2022/7816200
  • Mutawa, A. M. (2020). Synchronous vs. asynchronous distance education during a worldwide epidemic. In 12th International Conference on Education and New Learning Technologies (pp. 7510–7515). IATED. https://doi.org/10.21125/edulearn.2020.1906
  • Pallathadka, H., Wenda, A., Ramirez-Asís, E., Asís-López, M., Flores-Albornoz, J., & Phasinam, K. (2023). Classification and prediction of student performance data using various machine learning algorithms. Materials Today: Proceedings, 80(3), 3782–3785. https://doi.org/10.1016/j.matpr.2021.07.382
  • Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M., Prettenhofer, P., Weiss, R., & Dubourg, V. (2011). Scikit-learn: Machine learning in Python. Journal of Machine Learning Research, 12(85), 2825–2830. https://jmlr.csail.mit.edu/papers/volume12/pedregosa11a/pedregosa11a.pdf
  • Permana, F. C., Rosmansyah, Y., & Abdullah, A. S. (2017). Naive Bayes as opinion classifier to evaluate students satisfaction based on student sentiment in Twitter Social Media. Journal of Physics: Conference Series, 893(1), 012051. https://doi.org/10.1088/1742-6596/893/1/012051
  • Raj, N. S., & Renumol Renumol, V. G. (2022). Early prediction of student engagement in virtual learning environments using machine learning techniques. E-Learning and Digital Media, 19(6), 537–554. https://doi.org/10.1177/20427530221108027
  • Rasheed, F., & Wahid, A. (2021). Learning style detection in E-learning systems using machine learning techniques. Expert Systems with Applications, 174, 114774. https://doi.org/10.1016/j.eswa.2021.114774
  • Read, J., Pfahringer, B., Holmes, G., & Frank, E. (2009). Classifier chains for multi-label classification. In W. Buntine, M. Grobelnik, D. Mladenić, J. Shawe-Taylor (Eds.), Machine Learning and Knowledge Discovery in Databases. ECML PKDD 2009. Lecture Notes in Computer Science (Vol. 5782). Springer. https://doi.org/10.1007/978-3-642-04174-7_17
  • Rezapour, M., & Elmshaeuser, S. K. (2022). Artificial intelligence-based analytics for impacts of COVID-19 and online learning on college students’ mental health. arXiv preprint arXiv:2202.07441.
  • Rincon-Flores, E. G., Lopez-Camacho, E., Mena, J., & Olmos, O. (2022). Teaching through learning analytics: Predicting student learning profiles in a physics course at a higher education institution. International Journal of Interactive Multimedia and Artificial Intelligence, 7(7), 82. https://doi.org/10.9781/ijimai.2022.01.005
  • Saputra, E. P., Sugiono, I., & Supriatiningsih, H. N. (2021). Grouping of success levels in E-learning learning factors: Approaches with machine learning algorithm. Jurnal Mantik, 5(1), 78–85. https://iocscience.org/ejournal/index.php/mantik
  • Skrbinjek, V., & Dermol, V. (2019). Predicting students’ satisfaction using a decision tree. Tertiary Education and Management, 25(2), 101–113. https://doi.org/10.1007/s11233-018-09018-5
  • Sorower, M. S. (2010). A literature survey on algorithms for multi-label learning. Oregon State University, Corvallis, 18(1), 25. https://www.researchgate.net/publication/266888594_A_Literature_Survey_on_Algorithms_for_Multi-label_Learning
  • Spyromitros, E., Tsoumakas, G., & Vlahavas, I. (2008). An empirical study of lazy multilabel classification algorithms. Artificial Intelligence: Theories, Models and Applications, 5138, 401–406. https://doi.org/10.1007/978-3-540-87881-0_40
  • Szymański, P., & Kajdanowicz, T. (2019). Scikit-multilearn: A scikit-based Python environment for performing multi-label classification. The Journal of Machine Learning Research, 20(6), 1–22. https://jmlr.csail.mit.edu/papers/volume20/17-100/17-100.pdf
  • Tarekegn, A. N., Giacobini, M., & Michalak, K. (2021). A review of methods for imbalanced multi-label classification. Pattern Recognition, 118, 107965. https://doi.org/10.1016/j.patcog.2021.107965
  • Tran, Q. H., & Nguyen, T. M. (2021). Determinants in student satisfaction with online learning: A survey study of second-year students at private universities in HCMC. International Journal of TESOL & Education, 2(1), 63–80. https://doi.org/10.54855/ijte22215
  • Tzeng, J.-W., Lee, C.-A., Huang, N.-F., Huang, H.-H., & Lai, C.-F. (2022). MOOC evaluation system based on deep learning. The International Review of Research in Open and Distributed Learning, 23(1), 21–40. https://doi.org/10.19173/irrodl.v22i4.5417
  • Varzaneh, Z. A., Orooji, A., Erfannia, L., & Shanbehzadeh, M. (2022). A new COVID-19 intubation prediction strategy using an intelligent feature selection and K-NN method. Informatics in Medicine Unlocked, 28, 100825. https://doi.org/10.1016/j.imu.2021.100825
  • Wang, Y.-M., Wei, C.-L., Chen, W.-J., & Wang, Y.-S. (2023). Revisiting the E-learning systems success model in the post-COVID-19 age: The role of monitoring quality. International Journal of Human–Computer Interaction, 1–16. https://doi.org/10.1080/10447318.2023.2231278
  • Warner, P. (2008). Ordinal logistic regression. The Journal of Family Planning and Reproductive Health Care, 34(3), 169–170. https://doi.org/10.1783/147118908784734945
  • World Population by Country. (2023). https://worldpopulationreview.com/
  • Wu, X.-Z., Zhou, Z.-H. (2017). A unified view of multi-label performance measures. In Proceedings of the 34th International Conference on Machine Learning (pp. 3780–3788). JMLR.org.
  • Zapata-Cuervo, N., Montes-Guerra, M. I., Shin, H. H., Jeong, M., & Cho, M.-H. (2021). Students’ psychological perceptions toward online learning engagement and outcomes during the COVID-19 pandemic: A comparative analysis of students in three different countries. Journal of Hospitality & Tourism Education, 35(2), 108–122. https://doi.org/10.1080/10963758.2021.1907195
  • Zhang, H. (2004). The optimality of naive Bayes. In Proceedings of the Seventeenth International Florida Artificial Intelligence Research Society Conference (FLAIRS 2004) (p. 2). The AAAI Press.
  • Zhang, M.-L., & Zhou, Z.-H. (2007). ML-KNN: A lazy learning approach to multi-label learning. Pattern Recognition, 40(7), 2038–2048. https://doi.org/10.1016/j.patcog.2006.12.019
  • Zhu, M., & Song, J. (2013). An embedded backward feature selection method for MCLP classification algorithm. Procedia Computer Science, 17, 1047–1054. https://doi.org/10.1016/j.procs.2013.05.133
  • Zu, Z. Y., Jiang, M. D., Xu, P. P., Chen, W., Ni, Q. Q., Lu, G. M., & Zhang, L. J. (2020). Coronavirus disease 2019 (COVID-19): A perspective from China. Radiology, 296(2), E15–E25. https://doi.org/10.1148/radiol.2020200490
  • Zupan, J. (1994). Introduction to artificial neural network (ANN) methods: What they are and how to use them. Acta Chimica Slovenica, 41(3), 327–352. https://www2.chemie.uni-erlangen.de/publications/ANN-book/publications/ACS-41-94.pdf