104
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Constant and Time-Varying Display Lag on DVP and Cybersickness When Making Head-Movements in Virtual Reality

ORCID Icon, ORCID Icon, , ORCID Icon & ORCID Icon
Received 06 Jun 2023, Accepted 30 Nov 2023, Published online: 19 Dec 2023

References

  • Allison, R. S., Harris, L. R., Jenkin, M., Jasiobedzka, U., & Zacher, J. E. (2001). Tolerance of temporal delay in virtual environments. In Proceedings of IEEE Virtual Reality (pp. 247–254). IEEE. https://doi.org/10.1109/VR.2001.913793
  • Beadle, S. C., Muth, E. R., & Pagano, C. C. (2021). Using head-mounted displays to examine adaptation and calibration under varying perturbations. Displays, 66, 101985. https://doi.org/10.1016/j.displa.2020.101985
  • Bles, W., Bos, J. E., De Graaf, B., Groen, E., & Wertheim, A. H. (1998). Motion sickness: Only one provocative conflict? Brain Research Bulletin, 47(5), 481–487. https://doi.org/10.1016/S0361-9230(98)00115-4
  • Caserman, P., Martinussen, M., & Göbel, S. (2019). Effects of end-to-end latency on user experience and performance in immersive virtual reality applications. In Proceedings of the Joint International Conference on Entertainment Computing and Serious Games (pp. 57–69). Springer. https://doi.org/10.1007/978-3-030-34644-7_5
  • Clifton, J., & Palmisano, S. (2019). Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 24(3), 453–468. https://doi.org/10.1007/s10055-019-00407-8
  • DiZio, P., & Lackner, J. R. (1997). Circumventing side effects of immersive virtual environments. In G. Salvendy, M.J. Smith, & R.J. Koubek (Eds.), Advances in human factors/ergonomics: Vol. 21b. Design of computing systems: Social and ergonomic considerations. (pp. 893–896). Elsevier.
  • Draper, M. H., Viire, E. S., Furness, T. A., & Gawron, V. J. (2001). Effects of image scale and system time delay on simulator sickness within head-coupled virtual environments. Human Factors, 43(1), 129–146. https://doi.org/10.1518/001872001775992
  • Feng, J., Kim, J., Luu, W., & Palmisano, S. (2019). Method for estimating display lag in the Oculus Rift S and CV1. In Proceedings of SIGGRAPH Asia (pp. 1–2). https://doi.org/10.1145/3355056.3364590
  • Golding, J. F. (2016). Motion sickness. In J.M. Furman & T. Lempert (Eds.), Handbook of clinical neurology (3rd series neuro-otology) (Vol. 137, pp. 371–390). Elsevier. https://doi.org/10.1016/B978-0-444-63437-5.00027-3
  • Green, P., & MacLeod, C. (2016). Simr: An R package for power analysis of generalised linear mixed models by simulation. Methods in Ecology and Evolution, 7(4), 493–498. https://doi.org/10.1111/2041-210X.12504
  • Howarth, P. A., & Finch, M. (1999). The nauseogenicity of two methods of navigating within a virtual environment. Applied Ergonomics, 30(1), 39–45. https://doi.org/10.1016/S0003-6870(98)00041-6
  • Jennings, S., Craig, G., Reid, L., & Kruk, R. (2000). The effect of visual system time delay on helicopter control. In Proceedings of the Human Factors and Ergonomics Society Annual Meeting (Vol. 44, pp. 69–72). Sage. https://doi.org/10.1177/154193120004401318
  • Jennings, S., Reid, L. D., Craig, G., & Kruk, R. V. (2004). Time delays in visually coupled systems during flight test and simulation. Journal of Aircraft, 41(6), 1327–1335. https://doi.org/10.2514/1.449
  • Jeong, D., Paik, S., Noh, Y., & Han, K. (2023). MAC: Multimodal, attention-based cybersickness prediction modeling in virtual reality. Virtual Reality, 27(3), 2315–2330. https://doi.org/10.1007/s10055-023-00804-0
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1992). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Keshavarz, B., & Hecht, H. (2011). Validating an efficient method to quantify motion sickness. Human Factors, 53(4), 415–426. https://doi.org/10.1177/0018720811403736
  • Keshavarz, B., & Hecht, H. (2014). Pleasant music as a countermeasure against visually induced motion sickness. Applied Ergonomics, 45(3), 521–527. https://doi.org/10.1016/j.apergo.2013.07.009
  • Keshavarz, B., Peck, K., Rezaei, S., & Taati, B. (2022). Detecting and predicting visually induced motion sickness with physiological measures in combination with machine learning techniques. International Journal of Psychophysiology, 176, 14–26. https://doi.org/10.1016/j.ijpsycho.2022.03.006
  • Kim, J., Luu, W., & Palmisano, S. (2020). Multisensory integration and the experience of scene instability, presence and cybersickness in virtual environments. Computers in Human Behavior, 113, 106484. https://doi.org/10.1016/j.chb.2020.106484
  • Kinsella, A., Mattfeld, R., Muth, E., & Hoover, A. (2016). Frequency, not amplitude, of latency affects subjective sickness in a head-mounted display. Aerospace Medicine and Human Performance, 87(7), 604–609. https://doi.org/10.3357/AMHP.4351.2016
  • Lawson, B., & Stanney, K. M. (2021). Editorial: Cybersickness in virtual reality and augmented reality. Frontiers in Virtual Reality, 2, 2759682. https://doi.org/10.3389/frvir.2021.759682
  • Moss, J. D., & Muth, E. R. (2011). Characteristics of head-mounted displays and their effects on simulator sickness. Human Factors, 53(3), 308–319. https://doi.org/10.1177/0018720811405196
  • Moss, J. D., Austin, J., Salley, J., Coats, J., Williams, K., & Muth, E. R. (2011). The effects of display delay on simulator sickness. Displays, 32(4), 159–168. https://doi.org/10.1016/j.displa.2011.05.010
  • Oman, C. M. (1990). Motion sickness: A synthesis and evaluation of the sensory conflict theory. Canadian Journal of Physiology and Pharmacology, 68(2), 294–303. https://doi.org/10.1139/y90-044
  • Palmisano, S., Allison, R. S., & Kim, J. (2020). Cybersickness in head-mounted displays is caused by differences in the user’s virtual and physical head pose. Frontiers in Virtual Reality, 1, 587698. https://doi.org/10.3389/frvir.2020.587698
  • Palmisano, S., Allison, R. S., Teixeira, J., & Kim, J. (2023). Differences in virtual and physical head orientation predict sickness during active head-mounted display based virtual reality. Virtual Reality, 27(2), 1293–1313. https://doi.org/10.1007/s10055-022-00732-5
  • Palmisano, S., Szalla, L., & Kim, J. (2019). Monocular viewing protects against cybersickness produced by head-movements in the Oculus Rift. In Proceedings of the 25th ACM Symposium on Virtual Reality Software and Technology (pp. 1–2). ACM. https://doi.org/10.1145/3359996.3364699
  • Peng, C. K., Havlin, S., Stanley, H. E., & Goldberger, A. L. (1995). Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos, 5(1), 82–87. https://doi.org/10.1063/1.166141
  • Reason, J. T. (1978). Motion sickness adaptation: A neural mismatch model. Journal of the Royal Society of Medicine, 71(11), 819–829. https://doi.org/10.1177/014107687807101109
  • Rebenitsch, L., & Owen, C. (2016). Review on cybersickness in applications and visual displays. Virtual Reality, 20(2), 101–125. https://doi.org/10.1007/s10055-016-0285-9
  • Rebenitsch, L., & Owen, C. (2021). Estimating cybersickness from virtual reality applications. Virtual Reality, 25(1), 165–174. https://doi.org/10.1007/s10055-020-00446-6
  • Reinhard, R., Rutrecht, H. M., Hengstenberg, P., Tutulmaz, E., Geissler, B., Hecht, H., & Muttray, A. (2017). The best way to assess visually induced motion sickness in a fixed base driving simulator. Transportation Research Part F: Traffic Psychology and Behaviour, 48, 74–88. https://doi.org/10.1016/j.trf.2017.05.005
  • Risi, D., & Palmisano, S. (2019). Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 60, 9–17. https://doi.org/10.1016/j.displa.2019.08.003
  • St. Pierre, M. E., Banerjee, S., Hoover, A. W., & Muth, E. R. (2015). The effects of 0.2 Hz varying latency with 20–100 ms varying amplitude on simulator sickness in a helmet mounted display. Displays, 36, 1–8. https://doi.org/10.1016/j.displa.2014.10.005
  • Stanney, K. M., & Kennedy, R. S. (1998, October). Aftereffects from virtual environment exposure: How long do they last? In Proceedings of the human factors and ergonomics society annual meeting (Vol. 42, pp. 1476–1480). Sage Publications. https://doi.org/10.1177/154193129804202103
  • Stanney, K. M., Kennedy, R. S., & Hale, K. S. (2014). Virtual environment usage protocols. In K. S. Hale & K. M. Stanney (Eds.), Handbook of virtual environments: Design, implementation and applications (pp. 532–587). CRC Press.
  • Stanney, K. M., Lawson, B. D., Rokers, B., Dennison, M., Fidopiastis, C., Stoffregen, T., Weech, S., & Fulvio, J. M. (2020). Identifying causes of and solutions for cybersickness in immersive technology: Reformulation of a research and development agenda. International Journal of Human–Computer Interaction, 36(19), 1783–1803. https://doi.org/10.1080/10447318.2020.1828535
  • Stauffert, J. P., Niebling, F., & Latoschik, M. E. (2018). Effects of latency jitter on simulator sickness in a search task. In IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 121–127). IEEE. https://doi.org/10.1109/VR.2018.8446195
  • Stauffert, J. P., Niebling, F., & Latoschik, M. E. (2020). Latency and cybersickness: Impact, causes, and measures. A review. Frontiers in Virtual Reality, 1, 582204. https://doi.org/10.3389/frvir.2020.582204
  • Teixeira, J., & Palmisano, S. (2021). The effect of dynamic field-of-view restriction on experiences of cybersickness and presence in HMD-based virtual reality. Virtual Reality, 25(2), 433–445. https://doi.org/10.1007/s10055-020-00466-2
  • Tian, N., Lopes, P., & Boulic, R. (2022). A review of cybersickness in head-mounted displays: Raising attention to individual susceptibility. Virtual Reality, 26(4), 1409–1441. https://doi.org/10.1007/s10055-022-00638-2
  • Wilson, M. L., Beadle, S. C., Kinsella, A. J., Mattfeld, R. S., Hoover, A. W., & Muth, E. R. (2020). Task performance in a head-mounted display: The impacts of varying latency. Displays, 61, 101930. https://doi.org/10.1016/j.displa.2019.101930
  • Wu, W., Dong, Y., & Hoover, A. (2013). Measuring digital system latency from sensing to actuation at continuous 1-ms resolution. Presence: Teleoperators and Virtual Environments, 22(1), 20–35. https://doi.org/10.1162/PRES_a_00131

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.