99
Views
0
CrossRef citations to date
0
Altmetric
Research Report

How Depth of Field in Screen Images Affects Egocentric Distance Perception

&
Received 01 Aug 2023, Accepted 29 Jan 2024, Published online: 22 Feb 2024

References

  • Ahn, S., Kim, S., & Lee, S. (2021). Effects of visual cues on distance perception in virtual environments based on object identification and visually guided action. International Journal of Human–Computer Interaction, 37(1), 36–46. https://doi.org/10.1080/10447318.2020.1805875
  • Baveye, Y., Urban, F., & Chamaret, C. (2012). Image and video saliency models improvement by blur identification. In L. Bolc, R. Tadeusiewicz, L. J. Chmielewski, & K. Wojciechowski (Eds.), Computer Vision and Graphics: International Conference, ICCVG 2012, Warsaw, Poland, September 24–26, 2012. Proceedings (pp. 280–287). Springer.
  • Bouchard, S., St-Jacques, J., Robillard, G., & Renaud, P. (2008). Anxiety increases the feeling of presence in virtual reality. Presence: Teleoperators and Virtual Environments, 17(4), 376–391. https://doi.org/10.1162/pres.17.4.376
  • Bringoux, L., Bourdin, C., Lepecq, J.-C., Sandor, P. M., Pergandi, J.-M., & Mestre, D. (2009). Interaction between reference frames during subjective vertical estimates in a tilted immersive virtual environment. Perception, 38(7), 1053–1071.https://doi.org/10.1068/p6089
  • Creem-Regehr, S. H., & Kunz, B. R. (2010). Perception and action. Wiley Interdisciplinary Reviews. Cognitive Science, 1(6), 800–810.https://doi.org/10.1002/wcs.82
  • Creem-Regehr, S. H., Willemsen, P., Gooch, A. A., & Thompson, W. B. (2005). The influence of restricted viewing conditions on egocentric distance perception: Implications for real and virtual indoor environments. Perception, 34(2), 191–204.https://doi.org/10.1068/p5144
  • Cutting, J. E. (1997). How the eye measures reality and virtual reality. Behavior Research Methods, Instruments, &Amp Computers, 29(1), 27–36. https://doi.org/10.3758/BF03200563
  • Cutting, J. E., & Vishton, P. M. (1995). Perceiving layout and knowing distances: The integration, relative potency, and contextual use of different information about depth. In W. Epstein & S. J. Rogers (Eds.), Perception of space and motion (pp. 69–117). Elsevier. https://psycnet.apa.org/record/1995-98658-000
  • Datta, R., Joshi, D., Li, J., & Wang, J. Z. (2006). Studying aesthetics in photographic images using a computational approach. In A. Leonardis, H. Bischof, & A. Pinz (Eds.), Computer Vision–ECCV 2006: 9th European Conference on Computer Vision, Graz, Austria, May 7–13, 2006, Proceedings, Part III 9 (pp. 288–301).
  • De Silva, V., Fernando, A., Worrall, S., Arachchi, H. K., & Kondoz, A. (2011). Sensitivity analysis of the human visual system for depth cues in stereoscopic 3-D displays. IEEE Transactions on Multimedia, 13(3), 498–506. https://doi.org/10.1109/TMM.2011.2129500
  • Dukes, J. M., Norman, J. F., & Shartzer, C. D. (2022). Visual distance perception indoors, outdoors, and in the dark. Vision Research, 194, 107992. https://doi.org/10.1016/j.visres.2021.107992
  • Feldstein, I. T., Kölsch, F. M., & Konrad, R. (2020). Egocentric distance perception: A comparative study investigating differences between real and virtual environments. Perception, 49(9), 940–967.https://doi.org/10.1177/0301006620951997
  • Goldstein, A. (2007). Multinational companies from emerging economies: Composition, conceptualization and direction in the global economy. Springer.
  • Gombač, L., Čopič Pucihar, K., Kljun, M., Coulton, P., & Grbac, J. (2016). 3D Virtual tracing and depth perception problem on mobile AR. In J. Kaye, A. Druin, C. Lampe, D. Morris, & J. P. Hourcade (Eds.), Proceedings of the 2016 CHI Conference Extended Abstracts on Human Factors in Computing Systems (pp. 1849–1856). Association for Computing Machinery. https://doi.org/10.1145/2851581.2892412
  • Guzsvinecz, T., Perge, E., & Szűcs, J. (2023). Analyzing accurate egocentric distance estimates of university students in virtual environments with a desktop display and gear VR display. Electronics, 12(10), 2253. https://doi.org/10.3390/electronics12102253
  • Haber, R. N. (1986). Toward a theory of the perceived spatial layout of scenes. In A. Rosenfeld (Ed.), Human and machine vision II (pp. 109–148). Elsevier.
  • Hamerly, J. R., & Dvorak, C. A. (1981). Detection and discrimination of blur in edges and lines. Journal of the Optical Society of America, 71(4), 448–452. https://doi.org/10.1364/JOSA.71.000448
  • He, Z. J., Wu, B., Ooi, T. L., Yarbrough, G., & Wu, J. (2004). Judging egocentric distance on the ground: Occlusion and surface integration. Perception, 33(7), 789–806. https://doi.org/10.1068/p5256a
  • Held, R. T., Cooper, E. A., O’Brien, J. F., & Banks, M. S. (2010). Using blur to affect perceived distance and size. ACM Transactions on Graphics, 29(2), 1–16.https://doi.org/10.1145/1731047.1731057
  • Hillaire, S., Lécuyer, A., Cozot, R., & Casiez, G. (2008). Using an eye-tracking system to improve camera motions and depth-of-field blur effects in virtual environments. In M. C. Lin (Ed.), 2008 IEEE Virtual Reality Conference (pp. 47–50). IEEE.
  • Hussain, R., Chessa, M., & Solari, F. (2020). Modelling foveated depth-of-field blur for improving depth perception in virtual reality. In F. Solari & D. Sellami (Eds.), 2020 IEEE 4th International Conference on Image Processing, Applications and Systems (IPAS) (pp. 71–76). IEEE. https://doi.org/10.1109/IPAS50080.2020.9334947
  • Jerald, J. (2015). The VR book: Human-centered design for virtual reality. Morgan & 9Claypool.
  • Jones, J. A., Swan, J. E., Singh, G., & Ellis, S. R. (2011). Peripheral visual information and its effect on distance judgments in virtual and augmented environments. In S. N. Spencer (Ed.), Proceedings of the ACM SIGGRAPH Symposium on Applied Perception in Graphics and Visualization (pp. 29–36). Association for Computing Machinery. https://doi.org/10.1145/2077451.2077457
  • Kelly, J. W. (2023). Distance perception in virtual reality: A meta-analysis of the effect of head-mounted display characteristics. IEEE Transactions on Visualization and Computer Graphics, 29(12), 4978–4989. https://doi.org/10.1109/TVCG.2022.3196606
  • Kenyon, R. V., Sandin, D., Smith, R. C., Pawlicki, R., & Defanti, T. (2007). Size-constancy in the CAVE. Presence: Teleoperators and Virtual Environments, 16(2), 172–187. https://doi.org/10.1162/pres.16.2.172
  • Klein, E., Swan, J. E., Schmidt, G. S., Livingston, M. A., & Staadt, O. G. (2009). Measurement protocols for medium-field distance perception in large-screen immersive displays. In A. Steed, R. W. Lindeman (Eds.), 2009 IEEE Virtual Reality Conference (pp. 107–113). IEEE. https://doi.org/10.1109/VR.2009.4811007
  • Korshunova-Fucci, V., van Himbergen, F. F., Fan, H. M., Kohlrausch, A., & Cuijpers, R. H. (2023). Quantifying egocentric distance perception in virtual reality environment. International Journal of Human–Computer Interaction, 1–12. https://doi.org/10.1080/10447318.2023.2234117
  • Kunnapas, T. (1968). Distance perception as a function of available visual cues. Journal of Experimental Psychology, 77(4), 523–529. https://doi.org/10.1037/h0026050
  • Langbehn, E., Raupp, T., Bruder, G., Steinicke, F., Bolte, B., & Lappe, M. (2016). Visual blur in immersive virtual environments: Does depth of field or motion blur affect distance and speed estimation? In D. Kranzlmüller & G. Klinker (Eds.), Proceedings of the 22nd ACM Conference on Virtual Reality Software and Technology. (pp. 241–250). Association for Computing Machinery. https://doi.org/10.1145/2993369.2993379
  • Levin, C. A., & Haber, R. N. (1993). Visual angle as a determinant of perceived interobject distance. Perception & Psychophysics, 54(2), 250–259. https://doi.org/10.3758/bf03211761
  • Loomis, J. M., & Knapp, J. M. (2003). Visual perception of egocentric distance in real and virtual environments. In L. J. Hettinger, M. W. Haas (Eds.), Virtual and adaptive environments (pp. 21–46). CRC Press.
  • Mantiuk, R., Bazyluk, B., & Tomaszewska, A. (2011). Gaze-dependent depth-of-field effect rendering in virtual environments. In M. Ma, M. F. Oliveira, & J. M. Pereira (Eds.), Serious Games Development and Applications: Second International Conference, SGDA 2011, Lisbon, Portugal, September 19–20, 2011. Proceedings 2 (pp. 1–12). Springer.
  • March, J., Krishnan, A., Watt, S., Wernikowski, M., Gao, H., Yöntem, A. Ö., & Mantiuk, R. (2022). Impact of correct and simulated focus cues on perceived realism. In S. K. Jung, J. Lee, & A. Bargteil (Eds.), SIGGRAPH Asia 2022 Conference Papers (pp. 1–9). Association for Computing Machinery. https://doi.org/10.1145/3550469.3555405
  • Maruhn, P., Schneider, S., & Bengler, K. (2019). Measuring egocentric distance perception in virtual reality: Influence of methodologies, locomotion and translation gains. PLoS One, 14(10), e0224651.https://doi.org/10.1371/journal.pone.0224651
  • Masnadi, S., Pfeil, K. P., Sera-Josef, J. V., & LaViola, J. J. (2021, March). Field of view effect on distance perception in virtual reality. In 2021 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 542–543). IEEE. https://doi.org/10.1109/VRW52623.2021.00153
  • Mather, G. (1997). The use of image blur as a depth cue. Perception, 26(9), 1147–1158.https://doi.org/10.1068/p261147
  • Matsushima, E. H., de Oliveira, A. P., Ribeiro-Filho, N. P., & Da Silva, J. A. (2005). Visual angle as determinant factor for relative distance perception. Psicologica: International Journal of Methodology and Experimental Psychology, 26(1), 97–104. https://psicologicajournal.com/visual-angle-as-determinant-factor-for-relative-distance-perception/
  • Mauderer, M., Conte, S., Nacenta, M. A., & Vishwanath, D. (2014). Depth perception with gaze-contingent depth of field. In M. Jones, P. Palanque, A. Schmidt, & T. Grossman (Eds.), Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 217–226). Association for Computing Machinery. https://doi.org/10.1145/2556288.2557089
  • Meese, T. S., Baker, D. H., & Summers, R. J. (2023). Blurring the boundary between models and reality: Visual perception of scale assessed by performance. PLoS One, 18(5), e0285423.https://doi.org/10.1371/journal.pone.0285423
  • Murgia, A., & Sharkey, P. M. (2009). Estimation of distances in virtual environments using size constancy. International Journal of Virtual Reality, 8(1), 67–74. https://doi.org/10.20870/IJVR.2009.8.1.2714
  • Philbeck, J. W., & Loomis, J. M. (1997). Comparison of two indicators of perceived egocentric distance under full-cue and reduced-cue conditions. Journal of Experimental Psychology. Human Perception and Performance, 23(1), 72–85.https://doi.org/10.1037//0096-1523.23.1.72
  • Proffitt, D. R. (2006). Embodied perception and the economy of action. Perspectives on Psychological Science: A Journal of the Association for Psychological Science, 1(2), 110–122. https://doi.org/10.1111/j.1745-6916.2006.00008.x
  • Rand, K. M., Tarampi, M. R., Creem-Regehr, S. H., & Thompson, W. B. (2011). The importance of a visual horizon for distance judgments under severely degraded vision. Perception, 40(2), 143–154.https://doi.org/10.1068/p6843
  • Ray, S. (2002). Applied photographic optics. Routledge.
  • Reichelt, S., Häussler, R., Fütterer, G., & Leister, N. (2010). Depth cues in human visual perception and their realization in 3D displays. In B. Javidi, J.-Y. Son, J. T. Thomas, & D. D. Desjardins (Eds.), Three-dimensional imaging, visualization, and display 2010 and display technologies and applications for defense, security, and avionics IV (Vol. 7690, pp. 92–103). https://doi.org/10.1117/12.850094
  • Renner, R. S., Velichkovsky, B. M., & Helmert, J. R. (2013). The perception of egocentric distances in virtual environments-a review. ACM Computing Surveys, 46(2), 1–40. https://doi.org/10.1145/2543581.2543590
  • Rieser, J. J., Ashmead, D. H., Talor, C. R., & Youngquist, G. A. (1990). Visual perception and the guidance of locomotion without vision to previously seen targets. Perception, 19(5), 675–689.https://doi.org/10.1068/p190675
  • Sanchez-Vives, M. V., & Slater, M. (2005). From presence to consciousness through virtual reality. Nature Reviews. Neuroscience, 6(4), 332–339.https://doi.org/10.1038/nrn1651
  • Sherman, W. R., & Craig, A. B. (2018). Understanding virtual reality: Interface, application, and design. Morgan Kaufmann.
  • Slater, M., & Wilbur, S. (1997). A framework for immersive virtual environments (FIVE): Speculations on the role of presence in virtual environments. Presence: Teleoperators and Virtual Environments, 6(6), 603–616. https://doi.org/10.1162/pres.1997.6.6.603
  • Swan, J. E., Kuparinen, L., Rapson, S., & Sandor, C. (2017). Visually perceived distance judgments: Tablet-based augmented reality versus the real world. International Journal of Human–Computer Interaction, 33(7), 576–591. https://doi.org/10.1080/10447318.2016.1265783
  • Thomson, J. A. (1983). Is continuous visual monitoring necessary in visually guided locomotion? Journal of Experimental Psychology. Human Perception and Performance, 9(3), 427–443.https://doi.org/10.1037//0096-1523.9.3.427
  • Tsutsui, K., Taira, M., & Sakata, H. (2005). Neural mechanisms of three-dimensional vision. Neuroscience Research, 51(3), 221–229. https://doi.org/10.1016/j.neures.2004.11.006
  • Vienne, C., Masfrand, S., Bourdin, C., & Vercher, J.-L. (2020). Depth perception in virtual reality systems: Effect of screen distance, environment richness and display factors. IEEE Access, 8, 29099–29110. https://doi.org/10.1109/ACCESS.2020.2972122
  • Vishwanath, D., & Blaser, E. (2010). Retinal blur and the perception of egocentric distance. Journal of Vision, 10(10), 26–26. https://doi.org/10.1167/10.10.26
  • Wann, J., & Mon-Williams, M. (1996). What does virtual reality NEED?: Human factors issues in the design of three-dimensional computer environments. International Journal of Human-Computer Studies, 44(6), 829–847. https://doi.org/10.1006/ijhc.1996.0035
  • Watt, S. J., Akeley, K., Ernst, M. O., & Banks, M. S. (2005). Focus cues affect perceived depth. Journal of Vision, 5(10), 834–862.https://doi.org/10.1167/5.10.7
  • Wu, B., Ooi, T. L., & He, Z. J. (2004). Perceiving distance accurately by a directional process of integrating ground information. Nature, 428(6978), 73–77.https://doi.org/10.1038/nature02350
  • Zhang, T., O’hare, L., Hibbard, P. B., Nefs, H. T., & Heynderickx, I. (2014). Depth of field affects perceived depth in stereographs. ACM Transactions on Applied Perception, 11(4), 1–18. https://doi.org/10.1145/2667227

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.