174
Views
0
CrossRef citations to date
0
Altmetric
Research Report

Systematic Investigation of Optimal Electrode Positions and Re-Referencing Strategies on Ear Biosignals

ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon
Received 16 Jun 2023, Accepted 29 Jan 2024, Published online: 13 Feb 2024

References

  • Ahn, J. W., Ku, Y., & Kim, H. C. (2019). A novel wearable EEG and ECG recording system for stress assessment. Sensors, 19(9), 1991. https://doi.org/10.3390/s19091991
  • Arteaga-Falconi, J. S., Al Osman, H., & El Saddik, A. (2016). ECG authentication for mobile devices. IEEE Transactions on Instrumentation and Measurement, 65(3), 591–600. https://doi.org/10.1109/TIM.2015.2503863
  • Bazanova, O., & Vernon, D. (2014). Interpreting EEG alpha activity. Neuroscience and Biobehavioral Reviews, 44, 94–110. https://doi.org/10.1016/j.neubiorev.2013.05.007
  • Bleichner, M. G., Mirkovic, B., & Debener, S. (2016). Identifying auditory attention with ear-EEG: CEEGrid versus high-density cap-EEG comparison. Journal of Neural Engineering, 13(6), 066004. https://iopscience.iop.org/article/10.1088/1741-2560/13/6/066004/pdf
  • Celik, N., Manivannan, N., & Balachandran, W. (2016). Evaluation of a behind-the-ear ECG device for smartphone based integrated multiple smart sensor system in health applications. Evaluation, 7(7), 409–418. http://dx.doi.org/10.14569/IJACSA.2016.070757
  • Cha, H.-S., Choi, S.-J., & Im, C.-H. (2020). Real-time recognition of facial expressions using facial electromyograms recorded around the eyes for social virtual reality applications. IEEE Access. 8, 62065–62075. https://doi.org/10.1109/ACCESS.2020.2983608
  • Chai, X., Zhang, Z., Guan, K., Lu, Y., Liu, G., Zhang, T., & Niu, H. (2020). A hybrid BCI-controlled smart home system combining SSVEP and EMG for individuals with paralysis. Biomedical Signal Processing and Control, 56, 101687. https://doi.org/10.1016/j.bspc.2019.101687
  • Chang, W.-D., Lim, J.-H., & Im, C.-H. (2016). An unsupervised eye blink artifact detection method for real-time electroencephalogram processing. Physiological Measurement, 37(3), 401–417. https://doi.org/10.1088/0967-3334/37/3/401
  • Choi, G.-Y., Han, C.-H., Jung, Y.-J., & Hwang, H.-J. (2019). A multi-day and multi-band dataset for a steady-state visual-evoked potential–based brain-computer interface. GigaScience, 8(11), giz133. https://doi.org/10.1093/gigascience/giz133
  • Choi, S.-I., Han, C.-H., Choi, G.-Y., Shin, J., Song, K. S., Im, C.-H., & Hwang, H.-J. (2018). On the feasibility of using an ear-EEG to develop an endogenous brain-computer interface. Sensors, 18(9), 2856. https://doi.org/10.3390/s18092856
  • Choi, S.-I., & Hwang, H.-J. (2019). Effects of different re-referencing methods on spontaneously generated Ear-EEG. Frontiers in Neuroscience, 13, 822. https://doi.org/10.3389/fnins.2019.00822
  • Choi, S.-I., Lee, J.-Y., Lim, K. M., & Hwang, H.-J. (2022). Evaluation of real-time endogenous brain-computer interface developed using ear-electroencephalography. Frontiers in Neuroscience, 16, 842635. https://doi.org/10.3389/fnins.2022.842635
  • Christensen, C. B., Kappel, S. L., & Kidmose, P. (2018). Auditory steady-state responses across chirp repetition rates for ear-EEG and scalp EEG. 40th Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. (EMBC).
  • Da He, D., Winokur, E. S., & Sodini, C. G. (2015). An ear-worn vital signs monitor. IEEE Transactions on Bio-Medical Engineering, 62(11), 2547–2552. https://doi.org/10.1109/TBME.2015.2459061
  • da Silva Souto, C. F., Pätzold, W., Wolf, K. I., Paul, M., Matthiesen, I., Bleichner, M. G., & Debener, S. (2021). Flex-printed ear-EEG sensors for adequate sleep staging at home. Frontiers in Digital Health, 3, 688122. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8522006/pdf/fdgth-03-688122.pdf https://doi.org/10.3389/fdgth.2021.688122
  • de Lima Medeiros, P. A., da Silva, G. V. S., dos Santos Fernandes, F. R., Sánchez-Gendriz, I., Lins, H. W. C., da Silva Barros, D. M., Nagem, D. A. P., & de Medeiros Valentim, R. A. (2022). Efficient machine learning approach for volunteer eye-blink detection in real-time using webcam. Expert Systems with Applications, 188, 116073. https://doi.org/10.1016/j.eswa.2021.116073
  • Debener, S., Emkes, R., De Vos, M., & Bleichner, M. (2015). Unobtrusive ambulatory EEG using a smartphone and flexible printed electrodes around the ear. Scientific Reports, 5(1), 16743. https://doi.org/10.1038/srep16743
  • Estévez, P., Held, C., Holzmann, C., Perez, C., Pérez, J., Heiss, J., Garrido, M., & Peirano, P. (2002). Polysomnographic pattern recognition for automated classification of sleep-waking states in infants. Medical & Biological Engineering & Computing, 40(1), 105–113. https://doi.org/10.1007/BF02347703
  • Fiedler, L., Wöstmann, M., Graversen, C., Brandmeyer, A., Lunner, T., & Obleser, J. (2017). Single-channel in-ear-EEG detects the focus of auditory attention to concurrent tone streams and mixed speech. Journal of Neural Engineering, 14(3), 036020. https://doi.org/10.1088/1741-2552/aa66dd
  • Goverdovsky, V., Looney, D., Kidmose, P., & Mandic, D. P. (2016). In-ear EEG from viscoelastic generic earpieces: Robust and unobtrusive 24/7 monitoring. IEEE Sensors Journal, 16(1), 271–277. https://doi.org/10.1109/JSEN.2015.2471183
  • Goverdovsky, V., Von Rosenberg, W., Nakamura, T., Looney, D., Sharp, D. J., Papavassiliou, C., Morrell, M. J., & Mandic, D. P. (2017). Hearables: Multimodal physiological in-ear sensing. Scientific Reports, 7(1), 6948. https://doi.org/10.1038/s41598-017-06925-2
  • Gu, Y., Cleeren, E., Dan, J., Claes, K., Van Paesschen, W., Van Huffel, S., & Hunyadi, B. (2017). Comparison between scalp EEG and behind-the-ear EEG for development of a wearable seizure detection system for patients with focal epilepsy. Sensors, 18(2), 29. https://doi.org/10.3390/s18010029
  • Guger, C., Allison, B. Z., Großwindhager, B., Prückl, R., Hintermüller, C., Kapeller, C., Bruckner, M., Krausz, G., & Edlinger, G. (2012). How many people could use an SSVEP BCI? Frontiers in Neuroscience, 6, 169. https://doi.org/10.3389/fnins.2012.00169
  • Guler, S., Golparvar, A., Ozturk, O., & Yapici, M. K. (2022). Ear electrocardiography with soft graphene textiles for hearable applications. IEEE Sensors Letters, 6(9), 1–4. https://doi.org/10.1109/LSENS.2022.3198279
  • Hamadicharef, B., Zhang, H., Guan, C., Wang, C., Phua, K. S., Tee, K. P., Ang, K. K. (2009). Learning EEG-based spectral-spatial patterns for attention level measurement. 2009 IEEE International Symposium on Circuits and Systems (ISCAS).
  • Han, C.-H., Choi, G.-Y., & Hwang, H.-J. (2022). Deep convolutional neural network based eye states classification using ear-EEG. Expert Systems with Applications, 192, 116443. https://doi.org/10.1016/j.eswa.2021.116443
  • Hong, S., Kwon, H., Choi, S. H., & Park, K. S. (2018). Intelligent system for drowsiness recognition based on ear canal electroencephalography with photoplethysmography and electrocardiography. Information Sciences, 453, 302–322. https://doi.org/10.1016/j.ins.2018.04.003
  • Hwang, H.-J., Lim, J.-H., Jung, Y.-J., Choi, H., Lee, S. W., & Im, C.-H. (2012). Development of an SSVEP-based BCI spelling system adopting a QWERTY-style LED keyboard. Journal of Neuroscience Methods, 208(1), 59–65. https://doi.org/10.1016/j.jneumeth.2012.04.011
  • Kaongoen, N., Choi, J., & Jo, S. (2021). Speech-imagery-based brain–computer interface system using ear-EEG. Journal of Neural Engineering, 18(1), 016023. https://doi.org/10.1088/1741-2552/abd10e
  • Kaongoen, N., & Jo, S. (2017). A novel hybrid auditory BCI paradigm combining ASSR and P300. Journal of Neuroscience Methods, 279, 44–51. https://doi.org/10.1016/j.jneumeth.2017.01.011
  • Kappel, S. L., & Kidmose, P. (2017). High-density ear-EEG. 39th Annual International Conference of the IEEE in Medicine and Biology Society (EMBC).
  • Kappel, S. L., Looney, D., Mandic, D. P., & Kidmose, P. (2017). Physiological artifacts in scalp EEG and ear-EEG. Biomedical Engineering Online, 16(1), 103. https://doi.org/10.1186/s12938-017-0391-2
  • Kappel, S. L., Rank, M. L., Toft, H. O., Andersen, M., & Kidmose, P. (2018). Dry-contact electrode ear-EEG. IEEE Transactions on Bio-Medical Engineering, 66(1), 150–158. https://doi.org/10.1109/TBME.2018.2835778
  • Kidmose, P., Looney, D., Ungstrup, M., Rank, M. L., & Mandic, D. P. (2013). A study of evoked potentials from ear-EEG. IEEE Transactions on Bio-Medical Engineering, 60(10), 2824–2830. https://ieeexplore.ieee.org/document/6521411/ https://doi.org/10.1109/TBME.2013.2264956
  • Kim, D.-W., Hwang, H.-J., Lim, J.-H., Lee, Y.-H., Jung, K.-Y., & Im, C.-H. (2011). Classification of selective attention to auditory stimuli: Toward vision-free brain–computer interfacing. Journal of Neuroscience Methods, 197(1), 180–185. https://doi.org/10.1016/j.jneumeth.2011.02.007
  • Kim, Y.-J., Kwak, N.-S., & Lee, S.-W. (2018). Classification of motor imagery for Ear-EEG based brain-computer interface. In 2018 6th International Conference on Brain-Computer Interface (BCI)., https://doi.org/10.1109/IWW-BCI.2018.8311517
  • Köhler, B.-U., Hennig, C., & Orglmeister, R. (2002). The principles of software QRS detection. IEEE Engineering in Medicine and Biology Magazine, 21(1), 42–57. https://ieeexplore.ieee.org/document/993193/ https://doi.org/10.1109/51.993193
  • Lee, K.-R., Chang, W.-D., Kim, S., & Im, C.-H. (2017). Real-time “eye-writing” recognition using electrooculogram. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(1), 37–48. https://doi.org/10.1109/TNSRE.2016.2542524
  • Lim, C.-K A., Chia, W. C., & Chin, S. W. (2014). A mobile driver safety system: Analysis of single-channel EEG on drowsiness detection. In 2014 International Conference on Computational Science and Technology (ICCST). https://doi.org/10.1109/ICCST.2014.7045175
  • Looney, D., Kidmose, P., Park, C., Ungstrup, M., Rank, M. L., Rosenkranz, K., & Mandic, D. P. (2012). The in-the-ear recording concept: User-centered and wearable brain monitoring. IEEE Pulse, 3(6), 32–42. https://doi.org/10.1109/MPUL.2012.2216717
  • Meiser, A., & Bleichner, M. G. (2022). Ear-EEG compares well to cap-EEG in recording auditory ERPs: A quantification of signal loss. Journal of Neural Engineering, 19(2), 026042. https://doi.org/10.1088/1741-2552/ac5fcb
  • Mikkelsen, K. B., Kappel, S. L., Mandic, D. P., & Kidmose, P. (2015). EEG recorded from the ear: Characterizing the ear-EEG method. Frontiers in Neuroscience, 9, 438. https://doi.org/10.3389/fnins.2015.00438
  • Moody, G. B., & Mark, R. G. (2001). The impact of the MIT-BIH arrhythmia database. IEEE Engineering in Medicine and Biology Magazine, 20(3), 45–50. https://doi.org/10.1109/51.932724
  • Nakamura, T., Alqurashi, Y. D., Morrell, M. J., & Mandic, D. P. (2019). Hearables: Automatic overnight sleep monitoring with standardized in-ear EEG sensor. IEEE Transactions on Bio-Medical Engineering, 67(1), 203–212. https://doi.org/10.1109/TBME.2019.2911423
  • Nguyen, A., Alqurashi, R., Raghebi, Z., Banaei-Kashani, F., Halbower, A. C., Dinh, T., & Vu, T. (2016). In-ear biosignal recording system: A wearable for automatic whole-night sleep staging. Workshop Wearable Systems and Applications.
  • Norris, G., & Wilson, E. (1997). The eye mouse, an eye communication device. IEEE 23rd Northeast Bioengineering Conference.
  • Norton, J. J. S., Lee, D. S., Lee, J. W., Lee, W., Kwon, O., Won, P., Jung, S.-Y., Cheng, H., Jeong, J.-W., Akce, A., Umunna, S., Na, I., Kwon, Y. H., Wang, X.-Q., Liu, Z., Paik, U., Huang, Y., Bretl, T., Yeo, W.-H., & Rogers, J. A. (2015). Soft, curved electrode systems capable of integration on the auricle as a persistent brain–computer interface. Proceedings of the National Academy of Sciences of the United States of America, 112(13), 3920–3925. https://doi.org/10.1073/pnas.1424875112
  • Pacharra, M., Debener, S., & Wascher, E. (2017). Concealed around-the-ear EEG captures cognitive processing in a visual Simon task. Frontiers in Human Neuroscience, 11, 290. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5462961/pdf/fnhum-11-00290.pdf https://doi.org/10.3389/fnhum.2017.00290
  • Pan, J., & Tompkins, W. J. (1985). A real-time QRS detection algorithm. IEEE Transactions on Bio-Medical Engineering, 32(3), 230–236. https://doi.org/10.1109/TBME.1985.325532
  • Park, S., Cha, H.-S., & Im, C.-H. (2019). Development of an online home appliance control system using augmented reality and an SSVEP-based brain–computer interface. IEEE Access. 7, 163604–163614. https://doi.org/10.1109/ACCESS.2019.2952613
  • Pham, N., Dinh, T., Raghebi, Z., Kim, T., Bui, N., Nguyen, P., Truong, H., Banaei-Kashani, F., Halbower, A., & Dinh, T. (2020). WAKE: A behind-the-ear wearable system for microsleep detection. 18th Annual International Conference on Mobile System and Application Services.
  • Samsudin, N. N., Isaak, S., & Paraman, N. (2022). Implementation of optimized low pass filter for ecg filtering using Verilog. Journal of Physics, 2312(1), 012049. https://doi.org/10.1088/1742-6596/2312/1/012049
  • Tou, S. L. J., Warschausky, S. A., Karlsson, P., & Huggins, J. E. (2023). Individualized electrode subset improves the calibration accuracy of an EEG P300-design brain-computer interface for people with severe Cerebral Palsy. bioRxiv: The Preprint Server for Biology, 2023.2003. 2022.533775. https://doi.org/10.1101/2023.03.22.533775
  • Van Dun, B., Wouters, J., & Moonen, M. (2007). Improving auditory steady-state response detection using independent component analysis on multichannel EEG data. IEEE Transactions on Bio-Medical Engineering, 54(7), 1220–1230. https://ieeexplore.ieee.org/document/4237337/ https://doi.org/10.1109/TBME.2007.897327
  • Wan, F., Da Cruz, J. N., Nan, W., Wong, C. M., Vai, M. I., & Rosa, A. (2016). Alpha neurofeedback training improves SSVEP-based BCI performance. Journal of Neural Engineering, 13(3), 036019. https://iopscience.iop.org/article/10.1088/1741-2560/13/3/036019
  • Wang, Y.-T., Nakanishi, M., Wang, Y., Wei, C.-S., Cheng, C.-K., & Jung, T.-P. (2017). An online brain-computer interface based on SSVEPs measured from non-hair-bearing areas. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 25(1), 14–21. https://doi.org/10.1109/TNSRE.2016.2573819
  • Wang, Z., Wan, F., Wong, C. M., & Zhang, L. (2016). Adaptive Fourier decomposition based ECG denoising. Computers in Biology and Medicine, 77, 195–205. https://www.sciencedirect.com/science/article/abs/pii/S0010482516302104?via%3Dihub https://doi.org/10.1016/j.compbiomed.2016.08.013
  • Williamson, S., Kaufman, L., Lu, Z.-L., Wang, J.-Z., & Karron, D. (1997). Study of human occipital alpha rhythm: The alphon hypothesis and alpha suppression. International Journal of Psychophysiology, 26(1–3), 63–76. https://doi.org/10.1016/s0167-8760(97)00756-3
  • Wu, S.-L., Liao, L.-D., Lu, S.-W., Jiang, W.-L., Chen, S.-A., & Lin, C.-T. (2013). Controlling a human–computer interface system with a novel classification method that uses electrooculography signals. IEEE Transactions on Bio-Medical Engineering, 60(8), 2133–2141. https://doi.org/10.1109/TBME.2013.2248154
  • Xie, J., Xu, G., Wang, J., Li, M., Han, C., & Jia, Y. (2016). Effects of mental load and fatigue on steady-state evoked potential based brain computer interface tasks: A comparison of periodic flickering and motion-reversal based visual attention. PLoS One, 11(9), e0163426. https://doi.org/10.1371/journal.pone.0163426
  • Yarici, M. C., Thornton, M., & Mandic, D. P. (2022). Ear-EEG sensitivity modeling for neural sources and ocular artifacts. Frontiers in Neuroscience, 16, 997377. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9868963/pdf/fnins-16-997377.pdf https://doi.org/10.3389/fnins.2022.997377
  • Zahid, M. U., Kiranyaz, S., Ince, T., Devecioglu, O. C., Chowdhury, M. E., Khandakar, A., Tahir, A., & Gabbouj, M. (2021). Robust R-peak detection in low-quality holter ECGs using 1D convolutional neural network. IEEE Transactions on Bio-Medical Engineering, 69(1), 119–128. https://ieeexplore.ieee.org/ielx7/10/9662286/09451595.pdf?tp=&arnumber=9451595&isnumber=9662286&ref= https://doi.org/10.1109/TBME.2021.3088218
  • Zhang, Q., Zeng, X., Hu, W., & Zhou, D. (2017). A machine learning-empowered system for long-term motion-tolerant wearable monitoring of blood pressure and heart rate with ear-ECG/PPG. IEEE Access. 5, 10547–10561. https://doi.org/10.1109/ACCESS.2017.2707472
  • Zibrandtsen, I., Kidmose, P., Christensen, C., & Kjaer, T. (2017). Ear-EEG detects ictal and interictal abnormalities in focal and generalized epilepsy–A comparison with scalp EEG monitoring. Clinical Neurophysiology, 128(12), 2454–2461. https://www.sciencedirect.com/science/article/pii/S1388245717310763?via%3Dihub https://doi.org/10.1016/j.clinph.2017.09.115
  • Zibrandtsen, I., Kidmose, P., & Kjaer, T. (2018). Detection of generalized tonic-clonic seizures from ear-EEG based on EMG analysis. Seizure, 59, 54–59. https://www.sciencedirect.com/science/article/pii/S1059131118300943?via%3Dihub https://doi.org/10.1016/j.seizure.2018.05.001
  • Zibrandtsen, I., Kidmose, P., Otto, M., Ibsen, J., & Kjaer, T. (2016). Case comparison of sleep features from ear-EEG and scalp-EEG. Sleep Science, 9(2), 69–72. https://doi.org/10.1016/j.slsci.2016.05.006

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.