239
Views
0
CrossRef citations to date
0
Altmetric
Research Article

The Adoption of Occupational Exoskeletons: From Acceptability to Situated Acceptance, Questionnaire Surveys

, , , &
Received 26 Jun 2023, Accepted 29 Jan 2024, Published online: 19 Feb 2024

References

  • Agarwal, R., & Karahanna, E. (2000). Time flies when you’re having fun: Cognitive absorption and beliefs about information technology usage. MIS Quarterly, 24(4), 665–694. https://doi.org/10.2307/3250951
  • Ajzen, I. (1980). Understanding attitudes and predicting social behavior. Englewood cliffs.
  • Ajzen, I. (1985). From intentions to actions: A theory of planned behavior (pp. 11–39). Springer.
  • Alabdulkarim, S., & Nussbaum, M. A. (2019). Influences of different exoskeleton designs and tool mass on physical demands and performance in a simulated overhead drilling task. Applied Ergonomics, 74, 55–66. https://doi.org/10.1016/j.apergo.2018.08.004
  • Alexandre, B., Reynaud, E., Osiurak, F., & Navarro, J. (2018). Acceptance and acceptability criteria: A literature review. Cognition, Technology & Work, 20(2), 165–177. https://doi.org/10.1007/s10111-018-0459-1
  • Amoako-Gyampah, K., & Salam, A. F. (2004). An extension of the technology acceptance model in an ERP implementation environment. Information & Management, 41(6), 731–745. https://doi.org/10.1016/j.im.2003.08.010
  • Atain-Kouadio, J. J., Turpin-Legendre, E., & Kerangueven, L. (2020). Acquisition and integration of exoskeletons in establishments Guide for safety professionals, ED 6376. https://en.inrs.fr/dms/inrs/PDF/ED6376.pdf/ED6376.pdf
  • Bagozzi, R. P. (2007). The legacy of the technology acceptance model and a proposal for a paradigm shift. Journal of the Association for Information Systems, 8(4), 244–254. https://doi.org/10.17705/1jais.00122
  • Baldassarre, A., Lulli, L. G., Cavallo, F., Fiorini, L., Mariniello, A., Mucci, N., & Arcangeli, G. (2022). Industrial exoskeletons from bench to field: Human-machine interface and user experience in occupational settings and tasks. Frontiers in Public Health, 10, 1039680. https://doi.org/10.3389/fpubh.2022.1039680
  • Baltrusch, S. J., Houdijk, H., Van Dieën, J. H., & Kruif, J. T. C. D. (2021). Passive trunk exoskeleton acceptability and effects on self-efficacy in employees with low-back pain: A mixed method approach. Journal of Occupational Rehabilitation, 31(1), 129–141. https://doi.org/10.1007/s10926-020-09891-1
  • Baltrusch, S. J., Houdijk, H., van Dieën, J. H., van Bennekom, C. A., & de Kruif, A. J. (2020). Perspectives of end users on the potential use of trunk exoskeletons for people with low-back pain: A focus group study. Human Factors, 62(3), 365–376. https://doi.org/10.1177/0018720819885788
  • Baltrusch, S. J., Van Dieën, J. H., Van Bennekom, C. A. M., & Houdijk, H. (2018). The effect of a passive trunk exoskeleton on functional performance in healthy individuals. Applied Ergonomics, 72, 94–106. https://doi.org/10.1016/j.apergo.2018.04.007
  • Bayerl, P. S., Lauche, K., & Axtell, C. (2016). Revisiting group-based technology adoption as a dynamic process. MIS Quarterly, 40(3), 775–784. https://doi.org/10.25300/MISQ/2016/40.3.12
  • Bhattacherjee, A. (2001). Understanding information systems continuance: An expectation-confirmation model. MIS Quarterly, 25(3), 351–370. https://doi.org/10.2307/3250921
  • Bhattacherjee, A., & Premkumar, G. (2004). Understanding changes in belief and attitude toward information technology usage: A theoretical model and longitudinal test. MIS Quarterly, 28(2), 229–254. https://doi.org/10.2307/25148634
  • Bland, J. M., & Altman, D. G. (1997). Statistics notes: Cronbach’s alpha. BMJ, 314(7080), 572–572. https://doi.org/10.1136/bmj.314.7080.572
  • Bobillier Chaumon, M. E. (2021). Exploring the situated acceptance of emerging technologies in and concerning activity: Approaches and processes. In Digital transformations in the challenge of activity and work: Understanding and supporting technological changes (Vol. 3, pp. 237–256). John Wiley & Sons, Ltd.
  • Bosch, T., van Eck, J., Knitel, K., & de Looze, M. (2016). The effects of a passive exoskeleton on muscle activity, discomfort and endurance time in forward bending work. Applied Ergonomics, 54, 212–217. https://doi.org/10.1016/j.apergo.2015.12.003
  • Chen, K., Lou, V. W., & Cheng, C. Y. M. (2023). Intention to use robotic exoskeletons by older people: A fuzzy-set qualitative comparative analysis approach. Computers in Human Behavior, 141, 107610. https://doi.org/10.1016/j.chb.2022.107610
  • Crea, S., Beckerle, P., De Looze, M., De Pauw, K., Grazi, L., Kermavnar, T., Masood, J., O’Sullivan, L. W., Pacifico, I., Rodriguez-Guerrero, C., Vitiello, N., Ristić-Durrant, D., & Veneman, J. (2021). Occupational exoskeletons: A roadmap toward large-scale adoption. Methodology and challenges of bringing exoskeletons to workplaces. Wearable Technologies, 2, e11. https://doi.org/10.1017/wtc.2021.11
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  • De Bock, S., Ghillebert, J., Govaerts, R., Tassignon, B., Rodriguez-Guerrero, C., Crea, S., Veneman, J., Geeroms, J., Meeusen, R., & De Pauw, K. (2022). Benchmarking occupational exoskeletons: An evidence mapping systematic review. Applied Ergonomics, 98, 103582. https://doi.org/10.1016/j.apergo.2021.103582
  • De Bock, S., Rossini, M., Lefeber, D., Rodriguez-Guerrero, C., Geeroms, J., Meeusen, R., & De Pauw, K. (2022). An occupational shoulder exoskeleton reduces muscle activity and fatigue during overhead work. IEEE Transactions on Bio-Medical Engineering, 69(10), 3008–3020. https://doi.org/10.1109/TBME.2022.3159094
  • De Graaf, M. M., Ben Allouch, S., & van Dijk, J. A. (2016). Long-term evaluation of a social robot in real homes. Interaction Studies, 17(3), 462–491. https://doi.org/10.1075/is.17.3.08deg
  • de Looze, M. P., Bosch, T., Krause, F., Stadler, K. S., & O'Sullivan, L. W. (2016). Exoskeletons for industrial application and their potential effects on physical work load. Ergonomics, 59(5), 671–681. https://doi.org/10.1080/00140139.2015.1081988
  • De Vries, A. W., Krause, F., & de Looze, M. P. (2021). The effectivity of a passive arm support exoskeleton in reducing muscle activation and perceived exertion during plastering activities. Ergonomics, 64(6), 712–721. https://doi.org/10.1080/00140139.2020.1868581
  • Dwivedi, Y. K., Rana, N. P., Jeyaraj, A., Clement, M., & Williams, M. D. (2019). Re-examining the unified theory of acceptance and use of technology (UTAUT): Towards a revised theoretical model. Information Systems Frontiers, 21(3), 719–734. https://doi.org/10.1007/s10796-017-9774-y
  • Elprama, S. A., Vanderborght, B., & Jacobs, A. (2022). An industrial exoskeleton user acceptance framework based on a literature review of empirical studies. Applied Ergonomics, 100, 103615. https://doi.org/10.1016/j.apergo.2021.103615
  • Elprama, S. A., Vannieuwenhuyze, J. T., De Bock, S., Vanderborght, B., De Pauw, K., Meeusen, R., & Jacobs, A. (2020). Social processes: What determines industrial workers’ intention to use exoskeletons? Human Factors, 62(3), 337–350. https://doi.org/10.1177/0018720819889534
  • Engeström, Y. (1999). Activity theory and individual and social transformation. Perspectives on Activity Theory, 19(38), 19–30.
  • Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention and behaviour: An introduction to theory and research. Addison-Wesley.
  • Flache, A., Mäs, M., Feliciani, T., Chattoe-Brown, E., Deffuant, G., Huet, S., & Lorenz, J. (2017). Models of social influence: Towards the next frontiers. Journal of Artificial Societies and Social Simulation, 20(4), 1–31. https://doi.org/10.18564/jasss.3521
  • Graham, R. B., Agnew, M. J., & Stevenson, J. M. (2009). Effectiveness of an on-body lifting aid at reducing low back physical demands during an automotive assembly task: Assessment of EMG response and user acceptability. Applied Ergonomics, 40(5), 936–942. https://doi.org/10.1016/j.apergo.2009.01.006
  • Gumasing, M. J. J., Prasetyo, Y. T., Ong, A. K. S., Persada, S. F., & Nadlifatin, R. (2023). Factors influencing the perceived usability of wearable chair exoskeleton with market segmentation: A structural equation modeling and K-means clustering approach. International Journal of Industrial Ergonomics, 93, 103401. https://doi.org/10.1016/j.ergon.2022.103401
  • Hair, J. F., Hult, G. T. M., Ringle, C. M., & Sarstedt, M. (2017). A primer on partial least squares structural equation modeling (PLS-SEM) (2nd ed.). Sage.
  • Hensel, R., & Keil, M. (2019). Subjective evaluation of a passive industrial exoskeleton for lower-back support: A field study in the automotive sector. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 213–221. https://doi.org/10.1080/24725838.2019.1573770
  • Hoffmann, N., Prokop, G., & Weidner, R. (2022). Methodologies for evaluating exoskeletons with industrial applications. Ergonomics, 65(2), 276–295. https://doi.org/10.1080/00140139.2021.1970823
  • Huysamen, K., Bosch, T., de Looze, M., Stadler, K. S., Graf, E., & O'Sullivan, L. W. (2018). Evaluation of a passive exoskeleton for static upper limb activities. Applied Ergonomics, 70, 148–155. https://doi.org/10.1016/j.apergo.2018.02.009
  • Kermavnar, T., de Vries, A. W., de Looze, M. P., & O'Sullivan, L. W. (2021). Effects of industrial back-support exoskeletons on body loading and user experience: An updated systematic review. Ergonomics, 64(6), 685–711. https://doi.org/10.1080/00140139.2020.1870162
  • Kim, S., Madinei, S., Alemi, M. M., Srinivasan, D., & Nussbaum, M. A. (2020). Assessing the potential for “undesired” effects of passive back-support exoskeleton use during a simulated manual assembly task: Muscle activity, posture, balance, discomfort, and usability. Applied Ergonomics, 89, 103194. https://doi.org/10.1016/j.apergo.2020.103194
  • Kim, S., Moore, A., Srinivasan, D., Akanmu, A., Barr, A., Harris-Adamson, C., Rempel, D. M., & Nussbaum, M. A. (2019). Potential of exoskeleton technologies to enhance safety, health, and performance in construction: Industry perspectives and future research directions. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 185–191. https://doi.org/10.1080/24725838.2018.1561557
  • King, W. R., & He, J. (2006). A meta-analysis of the technology acceptance model. Information & Management, 43(6), 740–755. https://doi.org/10.1016/j.im.2006.05.003
  • Kozinc, Ž., Baltrusch, S., Houdijk, H., & Šarabon, N. (2020). Reliability of a battery of tests for functional evaluation of trunk exoskeletons. Applied Ergonomics, 86, 103117. https://doi.org/10.1016/j.apergo.2020.103117
  • Kuber, P. M., Abdollahi, M., Alemi, M. M., & Rashedi, E. (2022). A systematic review on evaluation strategies for field assessment of upper-body industrial exoskeletons: Current practices and future trends. Annals of Biomedical Engineering, 50(10), 1203–1231. https://doi.org/10.1007/s10439-022-03003-1
  • Kuutti, K. (1996). Activity theory as a potential framework for human–computer interaction research. In B. A. Nardi (Ed.), Context and consciousness: Activity theory and human computer interaction (pp. 17–44). MIT Press.
  • Legris, P., Ingham, J., & Collerette, P. (2003). Why do people use information technology? A critical review of the technology acceptance model. Information & Management, 40(3), 191–204. https://doi.org/10.1016/S0378-7206(01)00143-4
  • Lohmöller, J. B. (2013). Latent variable path modeling with partial least squares. Springer Science & Business Media.
  • Maurice, P., Camernik, J., Gorjan, D., Schirrmeister, B., Bornmann, J., Tagliapietra, L., Latella, C., Pucci, D., Fritzsche, L., Ivaldi, S., & Babic, J. (2019). Objective and subjective effects of a passive exoskeleton on overhead work. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 28(1), 152–164. https://doi.org/10.1109/TNSRE.2019.2945368
  • Moyon, A., Petiot, J. F., & Poirson, E. (2019b). Investigating the effects of passive exoskeletons and familiarization protocols on arms-elevated tasks. In Human Factors and Ergonomics Society Europe Chapter 2019 Annual Conference.
  • Moyon, A., Poirson, E., & Petiot, J. F. (2019a). Development of an acceptance model for occupational exoskeletons and application for a passive upper limb device. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 291–301. https://doi.org/10.1080/24725838.2019.1662516
  • Näf, M. B., Koopman, A. S., Baltrusch, S., Rodriguez-Guerrero, C., Vanderborght, B., & Lefeber, D. (2018). Passive back support exoskeleton improves range of motion using flexible beams. Frontiers in Robotics and AI, 5(72), 1–16. https://doi.org/10.3389/frobt.2018.00072
  • Nielsen, J. (1994). Usability engineering. Morgan Kaufmann.
  • Pacifico, I., Aprigliano, F., Parri, A., Cannillo, G., Melandri, I., Sabatini, A. M., Violante, F. S., Molteni, F., Giovacchini, F., Vitiello, N., & Crea, S. (2023). Evaluation of a spring-loaded upper-limb exoskeleton in cleaning activities. Applied Ergonomics, 106, 103877. https://doi.org/10.1016/j.apergo.2022.103877
  • Parthasarathy, M., & Bhattacherjee, A. (1998). Understanding post-adoption behavior in the context of online services. Information Systems Research, 9(4), 362–379. https://doi.org/10.1287/isre.9.4.362
  • Roquelaure, Y. (2018). Musculoskeletal disorders and psychosocial factors at work. ETUI Research Paper-Report, 142.
  • Russo, K., Kremer, A., & Brandt, I. (1999). Enterprise-wide software: Factors affecting implementation and impacts on the IS function. Communication World, 25(2), 30–42.
  • Schuitema, G., Steg, L., & Forward, S. (2010). Explaining differences in acceptability before and acceptance after the implementation of a congestion charge in Stockholm. Transportation Research Part A: Policy and Practice, 44(2), 99–109. https://doi.org/10.1016/j.tra.2009.11.005
  • Shore, L., Power, V., Hartigan, B., Schülein, S., Graf, E., de Eyto, A., & O'Sullivan, L. (2020). Exoscore: A design tool to evaluate factors associated with technology acceptance of soft lower limb exosuits by older adults. Human Factors, 62(3), 391–410. https://doi.org/10.1177/0018720819868122
  • Smets, M. (2019). A field evaluation of arm-support exoskeletons for overhead work applications in automotive assembly. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 192–198. https://doi.org/10.1080/24725838.2018.1563010
  • Sobel, M. N. (1982). Asymptotic confidence intervals for indirect effects in structural equations models. In S. Leinhart (Ed.), Sociological methodology (pp. 290–312). Jossey-Bass. https://doi.org/10.2307/270723
  • Spada, S., Ghibaudo, L., Gilotta, S., Gastaldi, L., & Cavatorta, M. P. (2017). Investigation into the applicability of a passive upper-limb exoskeleton in automotive industry. Procedia Manufacturing, 11, 1255–1262. https://doi.org/10.1016/j.promfg.2017.07.252
  • Theurel, J., & Desbrosses, K. (2019). Occupational exoskeletons: Overview of their benefits and limitations in preventing work-related musculoskeletal disorders. IISE Transactions on Occupational Ergonomics and Human Factors, 7(3–4), 264–280. https://doi.org/10.1080/24725838.2019.1638331
  • Theurel, J., Desbrosses, K., Roux, T., & Savescu, A. (2018). Physiological consequences of using an upper limb exoskeleton during manual handling tasks. Applied Ergonomics, 67, 211–217. https://doi.org/10.1016/j.apergo.2017.10.008
  • Torricelli, D., Rodriguez-Guerrero, C., Veneman, J. F., Crea, S., Briem, K., Lenggenhager, B., & Beckerle, P. (2020). Benchmarking wearable robots: Challenges and recommendations from functional, user experience, and methodological perspectives. Frontiers in Robotics and AI, 7, 561774. https://doi.org/10.3389/frobt.2020.561774
  • Turja, T., Saurio, R., Katila, J., Hennala, L., Pekkarinen, S., & Melkas, H. (2022). Intention to use exoskeletons in geriatric care work: Need for ergonomic and social design. Ergonomics in Design: The Quarterly of Human Factors Applications, 30(2), 13–16. https://doi.org/10.1177/1064804620961577
  • Venkatesh, V., & Davis, F. D. (2000). A theoretical extension of the technology acceptance model: Four longitudinal field studies. Management Science, 46(2), 186–204. https://doi.org/10.1287/mnsc.46.2.186.11926
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
  • Venkatesh, V., Thong, J. Y., & Xu, X. (2016). Unified theory of acceptance and use of technology: A synthesis and the road ahead. Journal of the Association for Information Systems, 17(5), 328–376. https://doi.org/10.17705/1jais.00428
  • Venturini, S., & Mehmetoglu, M. (2019). Plssem: A Stata package for structural equation modeling with partial least squares. Journal of Statistical Software, 88(8), 1–35. https://doi.org/10.18637/jss.v088.i08
  • Wüstenhagen, R., Wolsink, M., & Bürer, M. J. (2007). Social acceptance of renewable energy innovation: An introduction to the concept. Energy Policy, 35(5), 2683–2691. https://doi.org/10.1016/j.enpol.2006.12.001

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.