137
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effects of Task Proficiency and Automation Reliability on Pilot-ePilot Teaming in Intelligent Aircraft Cockpits

ORCID Icon, , &
Received 04 Oct 2023, Accepted 21 Feb 2024, Published online: 12 Mar 2024

References

  • Ahlstrom, U., & Friedman-Berg, F. J. (2006). Using eye movement activity as a correlate of cognitive workload. International Journal of Industrial Ergonomics, 36(7), 623–636. https://doi.org/10.1016/j.ergon.2006.04.002
  • Al-Shafei, M. (2024). Navigating Human-Chatbot Interactions: An Investigation into Factors Influencing User Satisfaction and Engagement. International Journal of Human–Computer Interaction, 1–18. https://doi.org/10.1080/10447318.2023.2301252
  • Andrews, S., & Veldre, A. (2020). Wrapping up sentence comprehension: The role of task demands and individual differences. Scientific Studies of Reading, 25(2), 123–140. https://doi.org/10.1080/10888438.2020.1817028
  • Anzanello, M. J., & Fogliatto, F. S. (2011). Learning curve models and applications: Literature review and research directions. International Journal of Industrial Ergonomics, 41(5), 573–583. https://doi.org/10.1016/j.ergon.2011.05.001
  • Bentivoglio, A. R., Bressman, S. B., Cassetta, E., Carretta, D., Tonali, P., & Albanese, A. (1997). Analysis of blink rate patterns in normal subjects. Movement Disorders, 12(6), 1028–1034. https://doi.org/10.1002/mds.870120629
  • Bhaskara, A., Duong, L., Brooks, J., Li, R., McInerney, R., Skinner, M., Pongracic, H., & Loft, S. (2021). Effect of automation transparency in the management of multiple unmanned vehicles. Applied Ergonomics, 90, 103243. https://doi.org/10.1016/j.apergo.2020.103243
  • Biswas, R., Veitch, B., & Power, S. D. (2019). Investigation of an EEG-based indicator of skill acquisition as novice participants practice a lifeboat maneuvering task in a simulator. International Journal of Human–Computer Interaction, 36(8), 777–787. https://doi.org/10.1080/10447318.2019.1687235
  • Braarud, P. Ø. (2021). Investigating the validity of subjective workload rating (NASA TLX) and subjective situation awareness rating (SART) for cognitively complex human–machine work. International Journal of Industrial Ergonomics, 86(14), 103233. https://doi.org/10.1016/j.ergon.2021.103233
  • Calhoun, G. (2022). Adaptable (not adaptive) automation: Forefront of human–automation teaming. Human Factors, 64(2), 269–277. https://doi.org/10.1177/00187208211037457
  • Calhoun, G., Bartik, J., Ruff, H., Behymer, K., & Frost, E. (2021). Enabling human-autonomy teaming with multi-unmanned vehicle control interfaces. Human-Intelligent Systems Integration, 3(2), 155–174. https://doi.org/10.1007/s42454-020-00020-0
  • Chen, Y. C., Lakhmani, S. G., Stowers, K., Selkowitz, A. R., Wright, J. L., & Barnes, M. (2018). Situation awareness-based agent transparency and human-autonomy teaming effectiveness. Theoretical Issues in Ergonomics Science, 19(3), 259–282. https://doi.org/10.1080/1463922X.2017.1315750
  • Choung, H., David, P., & Ross, A. (2023). Trust in AI and its role in the acceptance of AI technologies. International Journal of Human–Computer Interaction, 39(9), 1727–1739. https://doi.org/10.1080/10447318.2022.2050543
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Routledge.
  • Cohen, J. R. (2018). The behavioral and cognitive relevance of time-varying, dynamic changes in functional connectivity. NeuroImage, 180(Pt B), 515–525. https://doi.org/10.1016/j.neuroimage.2017.09.036
  • Ebbatson, M., Harris, D., Huddlestone, J., & Sears, R. (2010). The relationship between manual handling performance and recent flying experience in air transport pilots. Ergonomics, 53(2), 268–277. https://doi.org/10.1080/00140130903342349
  • FAA. (2021). Chapter 8: Airport traffic patterns. In FAA-H-8083-3C airplane flying handbook (pp. 8.1–8.7). Federal Aviation Administration.
  • Faul, F., Erdfelder, E., Lang, A. G., & Buchner, A. (2007). G* Power 3: A flexible statistical power analysis program for the social, behavioral, and biomedical sciences. Behavior Research Methods, 41(4), 1149–1160. https://doi.org/10.3758/BF03193146
  • Faulhaber, A. K., Friedrich, M., & Kapol, T. (2022). Absence of pilot monitoring affects scanning behavior of pilot flying: Implications for the design of single-pilot cockpits. Human Factors, 64(2), 278–290. https://doi.org/10.1177/0018720820939691
  • Fedunov, B. E. (2016). Tactical-level onboard real-time advisory expert systems for manned aircraft as development and maintenance entities. Journal of Computer and Systems Sciences International, 55(4), 579–597. https://doi.org/10.1134/S1064230716040055
  • Flathmann, C., Schelble, B. G., Rosopa, P. J., McNeese, N. J., Mallick, R., & Madathil, K. C. (2023). Examining the impact of varying levels of AI teammate influence on human-AI teams. International Journal of Human-Computer Studies, 177(4), 103061. https://doi.org/10.1016/j.ijhcs.2023.103061
  • Greiser, S., Lantzsch, R., Wolfram, J., Wartmann, J., Müllhäuser, M., Lüken, T., Döhler, H. U., & Peinecke, N. (2015). Results of the pilot assistance system ‘Assisted low-level flight and landing on unprepared landing sites’ obtained with the ACT/FHS research rotorcraft. Aerospace Science and Technology, 45(45), 215–227. https://doi.org/10.1016/j.ast.2015.05.017
  • Guo, Y., Freer, D., Deligianni, F., & Yang, G. Z. (2022). Eye-tracking for performance evaluation and workload estimation in space telerobotic training. IEEE Transactions on Human-Machine Systems, 52(1), 1–11. https://doi.org/10.1109/THMS.2021.3107519
  • Hoff, K. A., & Bashir, M. (2015). Trust in automation: Integrating empirical evidence on factors that influence trust. Human Factors, 57(3), 407–434. https://doi.org/10.1177/0018720814547570
  • Hou, L., Chi, H. L., Tarng, W., Chai, J., Panuwatwanich, K., & Wang, X. (2017). A framework of innovative learning for skill development in complex operational tasks. Automation in Construction, 83, 29–40. https://doi.org/10.1016/j.autcon.2017.07.001
  • Huang, L., Cooke, N. J., Gutzwiller, R. S., Berman, S., Chiou, E. K., Demir, M., & Zhang, W. (2021). Distributed dynamic team trust in human, artificial intelligence, and robot teaming. In C. S. Nam, & J. B. Lyons (Eds.), Trust in Human-Robot Interaction (pp. 301–319). Academic Press.
  • Kang, H. (2021). Sample size determination and power analysis using the G*Power software. Journal of Educational Evaluation for Health Professions, 18, 17. https://doi.org/10.3352/jeehp.2021.18.17
  • Kaplan, A. D., Kessler, T. T., Brill, J. C., & Hancock, P. A. (2023). Trust in Artificial Intelligence: Meta-analytic findings. Human Factors, 65(2), 337–359. https://doi.org/10.1177/00187208211013988
  • Kenny, B., & Power, S. D. (2021). Toward a subject-independent EEG-based neural indicator of task proficiency during training. Frontiers in Neuroergonomics, 1, 618632. https://doi.org/10.3389/fnrgo.2020.618632
  • Kim, Y. S. G., Petscher, Y., & Vorstius, C. (2019). Unpacking eye movements during oral and silent reading and their relations to reading proficiency in beginning readers. Contemporary Educational Psychology, 58(6), 102–120. https://doi.org/10.1016/j.cedpsych.2019.03.002
  • Kita, K., Kato, R., & Yokoi, H. (2010). Evaluation method for the proficiency level of an operating myoelectric hand using EMG signals. Annual International Conference of the IEEE Engineering in Medicine and Biology Society. IEEE Engineering in Medicine and Biology Society. Annual International Conference (vol. 2010, pp. 3373–3376). https://doi.org/10.1109/IEMBS.2010.5627922
  • Kunde, S., Palmer, E., & Duncan, B. (2022). Recognizing user proficiency in piloting small unmanned aerial vehicles (sUAV). IEEE Robotics and Automation Letters, 7(2), 2345–2352. https://doi.org/10.1109/LRA.2022.3142451
  • Lance, C. E., Hedge, J. W., & Alley, W. E. (1989). Joint relationships of task proficiency with aptitude, experience, and task difficulty: A cross-level, interactional study. Human Performance, 2(4), 249–272. https://doi.org/10.1207/s15327043hup0204_2
  • Lee, J. D., & See, K. A. (2004). Trust in automation: Designing for appropriate reliance. Human Factors, 46(1), 50–80. https://doi.org/10.1518/hfes.46.1.50_30392
  • Lee, J., & Moray, N. (1992). Trust, control strategies and allocation of function in human-machine systems. Ergonomics, 35(10), 1243–1270. https://doi.org/10.1080/00140139208967392
  • Li, M., Kamaraj, A. V., & Lee, J. D. (2023). Modeling trust dimensions and dynamics in human-agent conversation: A trajectory epistemic network analysis approach. International Journal of Human–Computer Interaction, 1–12. https://doi.org/10.1080/10447318.2023.2201555
  • Lyons, J. B., Sycara, K., Lewis, M., & Capiola, A. (2021). Human-autonomy teaming: Definitions, debates, and directions. Frontiers in Psychology, 12, 589585. https://doi.org/10.3389/fpsyg.2021.589585
  • Majumdar, S. (2022). U-2S dragon lady: The electronic pilot. Vayu Aerospace and Defence Review, 2, 73–74.
  • Mansikka, H., Virtanen, K., Harris, D., & Simola, P. (2016). Fighter pilots’ heart rate, heart rate variation and performance during an instrument flight rules proficiency test. Applied Ergonomics, 56, 213–219. https://doi.org/10.1016/j.apergo.2016.04.006
  • May, J. G., Kennedy, R. S., Williams, M. C., Dunlap, W. P., & Brannan, J. R. (1990). Eye movement indices of mental workload. Acta Psychologica, 75(1), 75–89. https://doi.org/10.1016/0001-6918(90)90067-P
  • Moray, N., Inagaki, T., & Itoh, M. (2000). Adaptive automation, trust, and self-confidence in fault management of time-critical tasks. Journal of Experimental Psychology Applied, 6(1), 44–58. https://doi.org/10.1037/1076-898X.6.1.44
  • Muir, B. M. (1987). Trust between humans and machines, and the design of decision aids. International Journal of Man-Machine Studies, 27(5-6), 527–539. https://doi.org/10.1016/S0020-7373(87)80013-5
  • Muir, B. M. (1994). Trust in automation: Part I. Theoretical issues in the study of trust and human intervention in automated systems. Ergonomics, 37(11), 1905–1922. https://doi.org/10.1080/00140139408964957
  • Muir, B. M., & Moray, N. (1996). Trust in automation. Part II. Experimental studies of trust and human intervention in a process control simulation. Ergonomics, 39(3), 429–460. https://doi.org/10.1080/00140139608964474
  • Myers, P. L., & Starr, A. W. (2021). Single pilot operations IN commercial cockpits: Background, challenges, and options. Journal of Intelligent & Robotic Systems, 102(1), 1–15. https://doi.org/10.1007/s10846-021-01371-9
  • Nittala, S. K., Elkin, C. P., Kiker, J. M., Meyer, R., Curro, J., Reiter, A. K., Xu, K. S., & Devabhaktuni, V. K. (2018). Pilot skill level and workload prediction for sliding-scale autonomy. 17th IEEE International Conference on Machine Learning and Applications (ICMLA) (pp. 1166–1173). https://doi.org/10.1109/ICMLA.2018.00188
  • Noorunnisa, S., Jarvis, D., Jarvis, J., & Rönnquist, R. (2021). A Conceptual Model for Human-Agent Teams. In G. Jezic, J. Chen-Burger, M. Kusek, R. Sperka, R. J. Howlett, & L. C. Jain, (Eds.), Agents and multi-agent systems: Technologies and applications (pp. 17–26). Springer.
  • O’Neill, T., McNeese, N., Barron, A., & Schelble, B. (2022). Human–autonomy teaming: A review and analysis of the empirical literature. Human Factors, 64(5), 904–938. https://doi.org/10.1177/0018720820960865
  • Olsson-Collentine, A., van Assen, M. A. L. M., & Hartgerink, C. H. J. (2019). The prevalence of marginally significant results in psychology over time. Psychological Science, 30(4), 576–586. https://doi.org/10.1177/0956797619830326
  • Pashakhanlou, A. H. (2019). AI, autonomy, and airpower: The end of pilots? Defence Studies, 19(4), 337–352. https://doi.org/10.1080/14702436.2019.1676156
  • Ramos, M. A., Sankaran, K., Guarro, S., Mosleh, A., Ramezani, R., & Arjounilla, A. (2023). The need for and conceptual design of an AI model-based Integrated Flight Advisory System. Proceedings of the Institution of Mechanical Engineers, 237(2), 485–507. https://doi.org/10.1177/1748006X221083379
  • Rodriguez, L. R., Orellana, C. B., Landfair, J., Magaldino, C., Demir, M., Amazeen, P. G., Metcalfe, J. S., Huang, L., & Kang, Y. (2021). Dynamics of trust in automation and interactive decision making during driving simulation tasks. Proceedings of the Human Factors and Ergonomics Society Annual Meeting, 65(1), 786–790. https://doi.org/10.1177/1071181321651288
  • Rohr, J. J., Sater, S., Sass, A. M., Marshall-Goebel, K., Ploutz-Snyder, R. J., Ethier, C. R., Stenger, M. B., Martin, B. A., & Macias, B. R. (2020). Quantitative magnetic resonance image assessment of the optic nerve and surrounding sheath after spaceflight. Npj Microgravity. 6(1), 30. https://doi.org/10.1038/s41526-020-00119-3
  • Schwarz, C., & Hahn, K. U. (2011). Automated pilot assistance for wake vortex encounters. Aerospace Science and Technology, 15(5), 416–421. https://doi.org/10.1016/j.ast.2010.09.008
  • Shneiderman, B. (2020a). Bridging the gap between ethics and practice: guidelines for reliable, safe, and trustworthy human-centered AI systems. ACM Transactions on Interactive Intelligent Systems, 10(4), 1–31. https://doi.org/10.1145/3419764
  • Shneiderman, B. (2020b). Human-centered artificial intelligence: Reliable, safe & trustworthy. International Journal of Human–Computer Interaction, 36(6), 495–504. https://doi.org/10.1080/10447318.2020.1741118
  • Stanton, N. A., Salmon, P., Harris, D., Marshall, A., Demagalski, J., Young, M. S., Waldmann, T., & Dekker, S. (2009). Predicting pilot error: Testing a new methodology and a multi-methods and analysts approach. Applied Ergonomics, 40(3), 464–471. https://doi.org/10.1016/j.apergo.2008.10.005
  • Stout, R. J., Salas, E., & Carson, R. (1994). Individual task proficiency and team process behavior: What’s important for team functioning? Military Psychology, 6(3), 177–192. https://doi.org/10.1207/s15327876mp0603_3
  • Taylor, R. M. (2011). Situational awareness rating technique (SART): The development of a tool for aircrew systems design. In Salas, E. (Ed.). Situational awareness. Routledge.
  • Thangavel, K., Sabatini, R., Gardi, A., Ranasinghe, K., Hilton, S., Servidia, P., & Spiller, D. (2024). Artificial intelligence for trusted autonomous satellite operations. Progress in Aerospace Sciences, 144(2), 100960. https://doi.org/10.1016/j.paerosci.2023.100960
  • Tokadlı, G., Dorneich, M. C., & Matessa, M. (2021). Evaluation of playbook delegation approach in human-autonomy teaming for single pilot operations. International Journal of Human–Computer Interaction, 37(7), 703–716. https://doi.org/10.1080/10447318.2021.1890485
  • Van Orden, K. F., Limbert, W., Makeig, S., & Jung, T. P. (2001). Eye activity correlates of workload during a visuospatial memory task. Human Factors, 43(1), 111–121. https://doi.org/10.1518/001872001775992570
  • Veitch, E., & Alsos, O. A. (2022). A systematic review of human-AI interaction in autonomous ship systems. Safety Science, 152, 105778. https://doi.org/10.1016/j.ssci.2022.105778
  • Xiong, W., Wang, Y., Zhou, Q., Liu, Z., & Zhang, X. (2016). The research of eye movement behavior of expert and novice in flight simulation of landing. In D. Harris (Ed.), Engineering psychology and cognitive ergonomics (pp. 485–493). Springer.
  • Yanıkoğlu, Ö., Kılıç, S., & Küçükönal, H. (2020). Gender in the cockpit: Challenges faced by female airline pilots. Journal of Air Transport Management, 86, 101823. https://doi.org/10.1016/j.jairtraman.2020.101823

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.