144
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Effect of Pre-Training and Role of Working Memory Characteristics in Learning with Immersive Virtual Reality

ORCID Icon &
Received 08 Dec 2023, Accepted 26 Feb 2024, Published online: 11 Mar 2024

References

  • Alhalabi, W. (2016). Virtual reality systems enhance students’ achievements in engineering education. Behaviour & Information Technology, 35(11), 919–925. https://doi.org/10.1080/0144929X.2016.1212931
  • Atkinson, R. C., & Shiffrin, R. M. (1968). Human memory: A proposed system and its control processes. In K. W. Spence & J. T. Spence (Eds.), The psychology of learning and motivation: Advances in research and theory (Vol. 2; pp. 89–195) Academic Press.
  • Baddeley, A. D., Eysneck, M. W., & Anderson, M. C. (2015). Memory (2nd ed.). Psychology Press.
  • Baddeley, A. D., & Hitch, G. (1974). Working memory. In G. H. Bower (Ed.), The psychology of learning and motivation (vol. 8; pp. 47–89). Academic Press.
  • Baddeley, A. D., & Hitch, G. J. (1994). Developments in the concept of working memory. Neuropsychology, 8(4), 485–493. https://doi.org/10.1037/0894-4105.8.4.485
  • Bailenson, J. (2018). Experience on demand: What virtual reality is, how it works, and what is can do. W. W. Norton.
  • Banich, M. T. (2009). Executive function: The search for an integrated account. Current Directions in Psychological Science, 18(2), 89–94. https://doi.org/10.1111/j.1467-8721.2009.01615.x
  • Barrett, L. F., Tugade, M. M., & Engle, R. W. (2004). Individual differences in working memory capacity and dual-process theories of the mind. Psychological Bulletin, 130(4), 553–573. https://doi.org/10.1037/0033-2909.130.4.553
  • Brown, P. C., Roediger, H. L., III, & McDaniel, M. A. (2014). Make it stick: The science of successful learning. Harvard University Press.
  • Calvert, J., & Abadia, R. (2020). Impact of immersing university and high school students in educational linear narratives using virtual reality technology. Computers & Education, 159, 104005.
  • Clarke, T., Ayres, P., & Sweller, J. (2005). The impact of sequencing and prior knowledge on learning mathematics through spreadsheet applications. Educational Technology Research and Development, 53(3), 15–24. https://doi.org/10.1007/BF02504794
  • Conway, A. R. A., Kane, M. J., Bunting, M. F., Hambrick, D. Z., Wilhelm, O., & Engle, R. W. (2005). Working memory span tasks: A methodological review and user’s guide. Psychonomic Bulletin & Review, 12(5), 769–786. https://doi.org/10.3758/BF03196772
  • Corsi, P. (1972). Memory and the medial temporal region of the brain [Doctoral thesis]. McGill University, Montreal.
  • Cowan, N. (1999). An embedded-processes model of working memory. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 62–101). Cambridge University Press. https://doi.org/10.1017/CBO9781139174909.006
  • Cowan, N., Elliott, E. M., Scott Saults, J., Morey, C. C., Mattox, S., Hismjatullina, A., & Conway, A. R. A. (2005). On the capacity of attention: Its estimation and its role in working memory and cognitive aptitudes. Cognitive Psychology, 51(1), 42–100. https://doi.org/10.1016/j.cogpsych.2004.12.001
  • Daneman, M., & Carpenter, P. A. (1980). Individual differences in working memory and reading. Journal of Verbal Learning and Verbal Behavior, 19(4), 450–466. https://doi.org/10.1016/S0022-5371(80)90312-6
  • Diamond, A. (2013). Executive functions. Annual Review of Psychology, 64(1), 135–168. https://doi.org/10.1146/annurev-psych-113011-143750
  • Ekstrand, C., Jamal, A., Nguyen, R., Kudryk, A., Mann, J., & Mendez, I. (2018). Immersive and interactive virtual reality to improve learning and retention of neuroanatomy in medical students: A randomized controlled study. CMAJ Open, 6(1), E103–E109. https://doi.org/10.9778/cmajo.20170110
  • Engle, R. W. (2002). Working memory capacity as executive attention. Current Directions in Psychological Science, 11(1), 19–23. https://doi.org/10.1111/1467-8721.00160
  • Engle, R. W., Tuholski, S. W., Laughlin, J. E., & Conway, A. R. A. (1999). Working memory, short-term memory, and general fluid intelligence: A latent-variable approach. Journal of Experimental Psychology. General, 128(3), 309–331. https://doi.org/10.1037/0096-3445.128.3.309
  • Eriksen, B. A., & Eriksen, C. W. (1974). Effects of noise letters upon the identification of a target letter in a nonsearch task. Perception & Psychophysics, 16(1), 143–149. https://doi.org/10.3758/BF03203267
  • Fauville, G., Queiroz, A. C. M., Hambrick, L., Brown, B. A., & Bailenson, J. N. (2021). Participatory research on using virtual reality to teach ocean acidifcation: A study in the marine education community. Environmental Education Research, 27(2), 254–278. https://doi.org/10.1080/13504622.2020.1803797
  • Friedman, N. P., Miyake, A., Young, S. E., DeFries, J. C., Corley, R. P., & Hewitt, J. K. (2008). Individual differences in executive functions are almost entirely genetic in origin. Journal of Experimental Psychology. General, 137(2), 201–225. https://doi.org/10.1037/0096-3445.137.2.201
  • Han, I. (2020). Immersive virtual field trips in education: A mixed-methods study on elementary students’ presence and perceived learning. British Journal of Educational Technology, 51(2), 420–435. https://doi.org/10.1111/bjet.12842
  • Hayes, A. F., & Coutts, J. J. (2020). Use Omega rather than Cronbach’s alpha for estimating reliability. But…. Communication Methods and Measures, 14(1), 1–24. https://doi.org/10.1080/19312458.2020.1718629
  • Huang, W. (2020). Investigating the novelty effect in virtual reality on STEM learning. [Unpublished doctoral dissertation]. Arizona State University.
  • Huang, C. L., Luo, Y. F., Yang, S. C., Lu, C. M., & Chen, A.-S. (2020). Influence of students’ learning style, sense of presence, and cognitive load on learning outcomes in an immersive virtual reality learning environment. Journal of Educational Computing Research, 58(3), 596–615. https://doi.org/10.1177/0735633119867422
  • Ilkowska, M., & Engle, R. W. (2010). Trait and state differences in working memory capacity. In A. Gruszka, G. Matthews, & B. Szymura (Eds.), Handbook on individual differences in cognition: Attention, memory, and executive control (pp. 295–320). Spring Science + Business Media.
  • Kim, H. K., Park, J., Choi, Y., & Choe, M. (2018). Virtual reality sickness questionnaire (VRSQ): Motion sickness measurement index in a virtual reality environment. Applied Ergonomics, 69, 66–73. https://doi.org/10.1016/j.apergo.2017.016
  • Kozhevnikov, M., Gurlitt, J., & Kozhevnikov, M. (2013). Learning relative motion concepts in immersive and non-immersive virtual environments. Journal of Science Education and Technology, 22(6), 952–962. https://doi.org/10.1007/s10956-103-9441-0
  • Latimier, A., Riegert, A., Peyre, H., Ly, S. T., Casati, R., & Ramus, F. (2019). Does pre-testing promote better retention than post-testing? NPJ Science of Learning, 4(1), 15. https://doi.org/10.1038/s41539-019-0053-1
  • Lawson, A. P., & Mayer, R. E. (2024). Individual differences in executive function affect learning with immersive virtual reality. Journal of Computer Assisted Learning. Advance online publication. https://doi.org/10.1111/jcal.12925
  • Lee, S. H., Sergueeva, K., Catangui, M., & Kandaurova, M. (2017). Assessing Google Cardboard virtual reality as a content delivery system in business classrooms. Journal of Education for Business, 92(4), 153–160. https://doi.org/10.1080/08832323.2017.1308308
  • Logie, R., Camos, V., & Cowan, N. (Eds.). (2020). Working memory: The state of the science. Oxford University Press.
  • MacLeod, C. M. (1991). Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109(2), 163–203. https://doi.org/10.1037/0033-2909.109.2.163
  • Makransky, G., Andreasen, N. K., Baceviciute, S., & Mayer, R. E. (2020). Immersive virtual reality increases liking but not learning with a science simulation and generative learning strategies promote learning in immersive virtual reality. Journal of Educational Psychology, 113(4), 719–735. https://doi.org/10.1037/edu0000473
  • Makransky, G., & Petersen, G. B. (2021). The Cognitive Affective Model of Immersive Learning (CAMIL): A theoretical research-based model of learning in immersive virtual reality. Educational Psychology Review, 33(3), 937–958. https://doi.org/10.1007/s10648-020-09586-2
  • Makransky, G., Terkildsen, T. S., & Mayer, R. E. (2019). Adding immersive virtual reality to a science lab simulation causes more presence but less learning. Learning and Instruction, 60, 225–236. https://doi.org/10.1016/j.learninstruc.2017.12.007
  • Matovu, H., Ungu, D. A. K., Won, M., Tsai, C.-C., Treagust, D. F., Mocerino, M., & Tasker, R. (2022). Immersive virtual reality for science learning: Design, implementation, and evaluation. Studies in Science Education, 59(2), 205–244. https://doi.org/10.1080/03057267.2022.2082680
  • Mayer, R. E. (2021). Multimedia learning (3rd ed.). Cambridge University Press.
  • Mayer, R. E. (2022). Cognitive theory of multimedia learning. In R. E. Mayer & L. Fiorella (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 57–72). Cambridge University Press.
  • Mayer, R. E., & Fiorella, L. (2022). Principles for managing essential processing in multimedia learning: Segmenting, pre-training, and modality principles. In R. E. Mayer & L. Fiorella (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 243–260). Cambridge University.
  • Mayer, R. E., Makransky, G., & Parong, J. (2022). The promise and pitfalls of learning in immersive virtual reality. International Journal of Human–Computer Interaction, 39(11), 2229–2238. https://doi.org/10.1080/10447318.2022.2108563
  • Mayer, R. E., Mathias, A., & Wetzell, K. (2002). Fostering understanding of multimedia messages through pre-training: Evidence for a two-stage theory of mental model construction. Journal of Experimental Psychology-Applied, 8(3), 147–154. https://doi.org/10.1037/10.1037/1076-898x.8.3.147
  • Meyer, O. A., Omdahl, M. K., & Makransky, G. (2019). Investingating the effect of pre-training when learning through immersive virtual reality and video: A media and methods experiment. Computers & Education, 140, 103603. https://doi.org/10.1016/j.compedu.2016.103603
  • Miguel-Alonso, I., Checa, D., Guillen-Sanz, H., & Bustillo, A. (2024). Evaluation of the novelty effect in immersive virtual reality learning experience. Virtual Reality, 28(1), 27. https://doi.org/10.1007/s10055-023-00926-5
  • Miguel-Alonso, I., Rodriguez-Garcia, B., Checa, D., & Bustillo, A. (2023). Countering the novelty effect: A tutorial for immersive virtual reality learning environments. Applied Sciences, 13(1), 593. https://doi.org/10.3390/app13010593
  • Miller, E. K., & Cohen, J. D. (2001). An integrative theory of prefrontal cortex function. Annual Review of Neuroscience, 24(1), 167–202. https://doi.org/10.1146/annurev.neuro.24.1.167
  • Osaka, N., Osaka, M., Kondo, H., Morishita, M., Fukuyama, H., & Shibasaki, H. (2004). The neural basis of executive function in working memory: An fMRI study based on individual differences. NeuroImage, 21(2), 623–631. https://doi.org/10.1016/j.neuroimage.2003.09.069
  • Paas, F., & Sweller, J. (2022). Implications of cognitive load theory for multimedia learning. In R. E. Mayer (Ed.), The Cambridge handbook of multimedia learning (3rd ed., pp. 73–81). Cambridge University Press.
  • Pak, R., McLaughlin, A. C., & Engle, R. (2023). The relevance of attention control, not working memory, in human factors. Human Factors, 1–12. https://doi.org/10.1177/00187208231159727
  • Parong, J. (2021). Multimedia learning in virtual and mixed reality. In R. E. Mayer & L. Fiorella (Eds.), The Cambridge handbook of multimedia learning (3rd ed., pp. 498–509). Cambridge University Press.
  • Parong, J., Mayer, R. E., Fiorella, L., MacNamara, A., Plass, J., & Homer, B. (2017). Learning executive function skills by playing focused video games. Contemporary Educational Psychology, 51, 141–151. https://doi.org/10.1016/j.cedpsych.2017.07.002
  • Parong, J., & Mayer, R. E. (2018). Learning science in immersive virtual reality. Journal of Educational Psychology, 110(6), 785–797. https://doi.org/10.1037/edu0000241
  • Parong, J., & Mayer, R. E. (2021a). Cognitive and affective processes for learning science in immersive virtual reality. Journal of Computer Assisted Learning, 37(1), 226–241. https://doi.org/10.1111/jcal.12482
  • Parong, J., & Mayer, R. E. (2021b). Learning about history in immersive virtual reality: Does immersion facilitate learning? Educational Technology Research and Development, 69(3), 1433–1451. https://doi.org/10.1007/s11423-021-09999-y
  • Pollock, E., Chandler, P., & Sweller, J. (2002). Assimilating complex information. Learning and Instruction, 12(1), 61–86. https://doi.org/10.1016/S0959-4752(01)00016-0
  • Roediger, H. L., III, & Karpicke, J. D. (2006). Test-enhanced learning: Taking memory tests improves long-term retention. Psychological Science, 17(3), 249–255. https://doi.org/10.1111/j.1467-9280.2006.01693.x]
  • Stepan, K., Zeiger, J., Hanchuk, S., Del Signore, A., Shrivastava, R., Govindaraj, S., & Iloreta, A. (2017). Immersive virtual reality as a teaching tool for neuroanatomy. International Forum of Allergy & Rhinology, 7(10), 1006–1013. https://doi.org/10.1002/air.21986
  • Stoet, G. (2010). PsyToolkit – a software package for programming psychological experiments using Linux. Behavior Research Methods, 42(4), 1096–1104. https://doi.org/10.3758/brm.42.4.1096
  • Stoet, G. (2017). PsyToolkit: A novel web-based method for running online questionnaires and reaction-time experiments. Teaching of Psychology, 44(1), 24–31. https://doi.org/10.1177/0098628316677643
  • Stroop, J. R. (1935). Studies of interference in serial verbal reactions. Journal of Experimental Psychology, 18(6), 643–662. https://doi.org/10.1037/h0054651
  • Sweller, J. (1994). Cognitive load theory, learning difficulty, and instructional design. Learning and Instruction, 4(4), 295–312. https://doi.org/10.1016/0959-4752(94)90003-5
  • Sweller, J. (2020). Cognitive load theory and educational technology. Educational Technology Research and Development, 68(1), 1–16. https://doi.org/10.1007/s11423-019-09701-3
  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory. Springer.
  • Waris, O., Soveri, A., Ahti, M., Hoffing, R. C., Ventus, D., Jaeggi, S. M., Seitz, A. R., & Laine, M. (2017). A latent factor analysis of working memory measures using large-scale data. Frontiers in Psychology, 8, 1062. https://doi.org/10.3389/fpsyg.2017.01062
  • Webster, R. (2016). Declarative knowledge acquisition in immersive virtual learning environments. Interactive Learning Environments, 24(6), 1319–1333. https://doi.org/10.1080/10494820.2014.994533
  • Wu, B., Yu, X., & Gu, X. (2020). Effectiveness in immersive virtual reality using head-mounted displays on learning performance: A meta-analysis. British Journal of Educational Psychology, 51(6), 1991–2005. https://doi.org/10.1111/bjet.13023

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.