574
Views
0
CrossRef citations to date
0
Altmetric
Research Report

The Effects of Walk-in-Place and Overground Walking on the Acquisition of Spatial Information by People With Visual Impairment in Virtual Reality Wayfinding

ORCID Icon, , ORCID Icon & ORCID Icon
Received 15 Sep 2023, Accepted 26 Feb 2024, Published online: 13 Mar 2024

References

  • Ahmetovic, D., Guerreiro, J., Ohn-Bar, E., Kitani, K. M., & Asakawa, C. (2019). Impact of Expertise on Interaction Preferences for Navigation Assistance of Visually Impaired Individuals [Paper presentation]. Proceedings of the 16th International Web for All Conference. https://doi.org/10.1145/3315002.3317561
  • Albouys-Perrois, J., Laviole, J., Briant, C., & Brock, A. M. (2018). Towards a Multisensory Augmented Reality Map for Blind and Low Vision People: A Participatory Design Approach [Paper presentation]. Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3173574.3174203
  • Alwi, S. R. A. W., & Noh, M. (2013). Survey on outdoor navigation system needs for blind people [Paper presentation]. 2013 IEEE Student Conference on Research and Developement, Putrajaya, Malaysia. https://doi.org/10.1109/SCOReD.2013.7002560
  • Andrade, R., Baker, S., Waycott, J., & Vetere, F. (2018). Echo-house: Exploring a virtual environment by using echolocation [Paper presentation]. Proceedings of the 30th Australian Conference on Computer-Human Interaction. https://doi.org/10.1145/3292147.3292163
  • Andrade, R., Waycott, J., Baker, S., & Vetere, F. (2021). Echolocation as a Means for People with Visual Impairment (PVI) to Acquire Spatial Knowledge of Virtual Space. ACM Transactions on Accessible Computing, 14(1), 1–25. https://doi.org/10.1145/3448273
  • Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2016). Locomotion in Virtual Reality for Individuals with Autism Spectrum Disorder [Paper presentation]. Proceedings of the 2016 Symposium on Spatial User Interaction. https://doi.org/10.1145/2983310.2985763
  • Bozgeyikli, E., Raij, A., Katkoori, S., & Dubey, R. (2019). Locomotion in virtual reality for room scale tracked areas. International Journal of Human-Computer Studies, 122, 38–49. https://doi.org/10.1016/j.ijhcs.2018.08.002
  • Brock, A. M., Truillet, P., Oriola, B., Picard, D., & Jouffrais, C. (2015). Interactivity improves usability of geographic maps for visually impaired people. Human–Computer Interaction, 30(2), 156–194. https://doi.org/10.1080/07370024.2014.924412
  • Cirio, G., Olivier, A. H., Marchal, M., & Pettré, J. (2013). Kinematic Evaluation of Virtual Walking Trajectories. IEEE Transactions on Visualization and Computer Graphics, 19(4), 671–680. https://doi.org/10.1109/TVCG.2013.34
  • Connors, E. C., Chrastil, E. R., Sánchez, J., & Merabet, L. B. (2014). Virtual environments for the transfer of navigation skills in the blind: A comparison of directed instruction vs. Video Game Based Learning Approaches. Frontiers in Human Neuroscience, 8, 223. https://doi.org/10.3389/fnhum.2014.00223
  • Cornell, E. H., & Heth, C. D. (2004). Memories of travel: Dead reckoning within the cognitive map (Human Spatial Memory (pp. 211–236). Psychology Press. https://doi.org/10.4324/9781410609984-18
  • Creed, C., Al-Kalbani, M., Theil, A., Sarcar, S., & Williams, I. (2023). Inclusive augmented and virtual reality: A research agenda. International Journal of Human–Computer Interaction, 1–20. https://doi.org/10.1080/10447318.2023.2247614
  • Cyberith (2021). CYBERITH. https://www.cyberith.com/
  • Darken, R. P., & Sibert, J. L., (1996). Wayfinding strategies and behaviors in large virtual worlds [Paper presentation]. Proceedings of the SIGCHI conference on human factors in computing systems. https://doi.org/10.1145/238386.238459
  • Dingwell, J. B., Cusumano, J. P., Cavanagh, P. R., & Sternad, D. (2001). Local dynamic stability versus kinematic variability of continuous overground and treadmill walking. Journal of Biomechanical Engineering, 123(1), 27–32. https://doi.org/10.1115/1.1336798
  • Ekvall Hansson, E., Valkonen, E., Olsson Möller, U., Chen Lin, Y., Magnusson, M., & Fransson, P.-A. (2021). Gait flexibility among older persons significantly more impaired in fallers than non-fallers—a longitudinal study. International Journal of Environmental Research and Public Health, 18(13), 7074. https://www.mdpi.com/1660-4601/18/13/7074 https://doi.org/10.3390/ijerph18137074
  • Fazzi, D. L., & Petersmeyer, B. A. (2001). Imagining the possibilities: Creative approaches to orientation and mobility instruction for persons who are visually impaired. American Foundation for the Blind.
  • Ferrell, K. A. (2011). Reach out and teach: Helping your child who is visually impaired learn and grow. American Foundation for the Blind.
  • Gabbard, J. L. (1997). A taxonomy of usability characteristics in virtual environments. Virginia Tech.
  • Galna, B., Peters, A., Murphy, A. T., & Morris, M. E. (2009). Obstacle crossing deficits in older adults: A systematic review. Gait & Posture, 30(3), 270–275. https://doi.org/10.1016/j.gaitpost.2009.05.022
  • Gipsman, S. C. (1981). Effect of visual condition on use of proprioceptive cues in performing a balance task. Journal of Visual Impairment & Blindness, 75(2), 50–54. https://doi.org/10.1177/0145482X8107500203
  • Google (2022). Google Resonance Audio. https://resonance-audio.github.io/resonance-audio/
  • Guth, D., & LaDuke, R. (1994). The veering tendency of blind pedestrians: An analysis of the problem and literature review. Journal of Visual Impairment & Blindness, 88(5), 391–400.
  • Guth, D., & LaDuke, R. (1995). Veering by blind pedestrians: Individual differences and their implications for instruction. Journal of Visual Impairment & Blindness, 89(1), 28–37. https://doi.org/10.1177/0145482X9508900107
  • Hill, S. W., Patla, A. E., Ishac, M. G., Adkin, A. L., Supan, T. J., & Barth, D. G. (1997). Kinematic patterns of participants with a below-knee prosthesis stepping over obstacles of various heights during locomotion. Gait & Posture, 6(3), 186–192. https://doi.org/10.1016/S0966-6362(97)01120-X
  • Hill, S. W., Patla, A. E., Ishac, M. G., Adkin, A. L., Supan, T. J., & Barth, D. G. (1999). Altered kinetic strategy for the control of swing limb elevation over obstacles in unilateral below-knee amputee gait. Journal of Biomechanics, 32(5), 545–549. https://doi.org/10.1016/S0021-9290(98)00168-7
  • Hofstad, C. J., van der Linde, H., Nienhuis, B., Weerdesteyn, V., Duysens, J., & Geurts, A. C. (2006). High Failure Rates When Avoiding Obstacles During Treadmill Walking in Patients With a Transtibial Amputation. Archives of Physical Medicine and Rehabilitation, 87(8), 1115–1122. https://doi.org/10.1016/j.apmr.2006.04.009
  • Hofstad, C. J., Weerdesteyn, V., van der Linde, H., Nienhuis, B., Geurts, A. C., & Duysens, J. (2009). Evidence for bilaterally delayed and decreased obstacle avoidance responses while walking with a lower limb prosthesis. Clinical Neurophysiology: official Journal of the International Federation of Clinical Neurophysiology, 120(5), 1009–1015. https://doi.org/10.1016/j.clinph.2009.03.003
  • Hollman, J. H., Watkins, M. K., Imhoff, A. C., Braun, C. E., Akervik, K. A., & Ness, D. K. (2016). A comparison of variability in spatiotemporal gait parameters between treadmill and overground walking conditions. Gait & Posture, 43, 204–209. https://doi.org/10.1016/j.gaitpost.2015.09.024
  • Houdijk, H., van Ooijen, M. W., Kraal, J. J., Wiggerts, H. O., Polomski, W., Janssen, T. W. J., & Roerdink, M. (2012). Assessing Gait Adaptability in People With a Unilateral Amputation on an Instrumented Treadmill With a Projected Visual Context. Physical Therapy, 92(11), 1452–1460. https://doi.org/10.2522/ptj.20110362
  • INFINADECK (2020). Infinadeck. https://www.infinadeck.com/
  • Ivanchev, M., Zinke, F., & Lucke, U. (2014). Pre-journey Visualization of Travel Routes for the Blind on Refreshable Interactive Tactile Displays [Paper presentation]. Computers helping people with special needs. https://doi.org/10.1007/978-3-319-08599-9_13
  • Kaipust, J. P., Huisinga, J. M., Filipi, M., & Stergiou, N. (2012). Gait variability measures reveal differences between multiple sclerosis patients and healthy controls. Motor Control, 16(2), 229–244. https://doi.org/10.1123/mcj.16.2.229
  • Kalawsky, R. S. (1999). VRUSE—a computerised diagnostic tool: For usability evaluation of virtual/synthetic environment systems. Applied Ergonomics, 30(1), 11–25. https://doi.org/10.1016/S0003-6870(98)00047-7
  • Kallie, C. S., Schrater, P. R., & Legge, G. E. (2007). Variability in stepping direction explains the veering behavior of blind walkers. Journal of Experimental Psychology. Human Perception and Performance, 33(1), 183–200. https://doi.org/10.1037/0096-1523.33.1.183
  • KATVR (2021). KAT Walk Mini S. https://www.kat-vr.com/products/kat-walk-mini-s
  • Keles, H. (2015). SpaceWalkerVR first test video VIRTUAL REALITY WALKING SIMULATOR. https://www.youtube.com/watch?v=6ySx4L0Ic74
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Kim, J. (2020). VIVR: Presence of immersive interaction for visual impairment virtual reality. IEEE Access. 8, 196151–196159. https://doi.org/10.1109/ACCESS.2020.3034363
  • Kolarik, A. J., Cirstea, S., Pardhan, S., & Moore, B. C. J. (2014). A summary of research investigating echolocation abilities of blind and sighted humans. Hearing Research, 310, 60–68. http://www.sciencedirect.com/science/article/pii/S0378595514000185 https://doi.org/10.1016/j.heares.2014.01.010
  • Kolarik, A. J., Moore, B. C. J., Zahorik, P., Cirstea, S., & Pardhan, S. (2016). Auditory distance perception in humans: A review of cues, development, neuronal bases, and effects of sensory loss. Attention, Perception & Psychophysics, 78(2), 373–395. https://doi.org/10.3758/s13414-015-1015-1
  • Kontarinis, D. A., & Howe, R. D. (1995). Tactile display of vibratory information in teleoperation and virtual environments. Presence: Teleoperators and Virtual Environments, 4(4), 387–402. https://doi.org/10.1162/pres.1995.4.4.387
  • Kreimeier, J., & Götzelmann, T. (2019). First Steps Towards Walk-In-Place Locomotion and Haptic Feedback in Virtual Reality for Visually Impaired [Paper presentation]. Extended Abstracts of the 2019 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3290607.3312944
  • Kreimeier, J., Karg, P., & Götzelmann, T. (2020). BlindWalkVR: Formative insights into blind and visually impaired people’s VR locomotion using commercially available approaches [Paper presentation]. Proceedings of the 13th ACM international conference on pervasive technologies related to assistive environments. https://doi.org/10.1145/3389189.3389193
  • Kreimeier, J., Ullmann, D., Kipke, H., & Götzelmann, T. (2020). Initial Evaluation of Different Types of Virtual Reality Locomotion Towards a Pedestrian Simulator for Urban and Transportation Planning [Paper presentation]. Extended abstracts of the 2020 CHI conference on human factors in computing systems. https://doi.org/10.1145/3334480.3382958
  • Lahav, O., Gedalevitz, H., Battersby, S., Brown, D., Evett, L., & Merritt, P. (2018). Virtual environment navigation with look-around mode to explore new real spaces by people who are blind. Disability and Rehabilitation, 40(9), 1072–1084. https://doi.org/10.1080/09638288.2017.1286391
  • Lee, J., & Hwang, J.-I. (2019). Walk-in-Place Navigation in VR [Paper presentation]. Proceedings of the 2019 ACM International Conference on Interactive Surfaces and Spaces, Daejeon, Republic of Korea. https://doi.org/10.1145/3343055.3361926
  • Maidenbaum, S., Levy-Tzedek, S., Chebat, D.-R., & Amedi, A. (2013). Increasing accessibility to the blind of virtual environments, using a virtual mobility aid based on the "EyeCane": feasibility study. PloS One, 8(8), e72555. https://doi.org/10.1371/journal.pone.0072555
  • May, K. R., Tomlinson, B. J., Ma, X., Roberts, P., & Walker, B. N. (2020). Spotlights and soundscapes: On the design of mixed reality auditory environments for persons with visual impairment. ACM Transactions on Accessible Computing, 13(2), 1–47. https://doi.org/10.1145/3378576
  • McFadyen, B. J., & Prince, F. (2002). Avoidance and accommodation of surface height changes by healthy, community-dwelling, young, and elderly men. The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 57(4), B166–B174. https://doi.org/10.1093/gerona/57.4.B166
  • Nescher, T., Zank, M., & Kunz, A. (2016). Simultaneous mapping and redirected walking for ad hoc free walking in virtual environments [Paper presentation]. 2016 IEEE Virtual Reality (VR). https://doi.org/10.1109/VR.2016.7504742
  • Nevisipour, M., Sugar, T., & Lee, H. (2023). Multi-tasking deteriorates trunk movement control during and after obstacle avoidance. Human Movement Science, 87, 103053. https://doi.org/10.1016/j.humov.2022.103053
  • Nohelova, D., Bizovska, L., Vuillerme, N., & Svoboda, Z. (2021). Gait variability and complexity during single and dual-task walking on different surfaces in outdoor environment. Sensors, 21(14), 4792. https://www.mdpi.com/1424-8220/21/14/4792 https://doi.org/10.3390/s21144792
  • Papadopoulos, K., Koustriava, E., & Barouti, M. (2017). Cognitive maps of individuals with blindness for familiar and unfamiliar spaces: Construction through audio-tactile maps and walked experience. Computers in Human Behavior, 75, 376–384. https://doi.org/10.1016/j.chb.2017.04.057
  • Peer, M., Brunec, I. K., Newcombe, N. S., & Epstein, R. A. (2021). Structuring knowledge with cognitive maps and cognitive graphs. Trends in Cognitive Sciences, 25(1), 37–54. https://doi.org/10.1016/j.tics.2020.10.004
  • Penati, R., Schieppati, M., & Nardone, A. (2020). Cognitive performance during gait is worsened by overground but enhanced by treadmill walking. Gait & Posture, 76, 182–187. https://doi.org/10.1016/j.gaitpost.2019.12.006
  • Picinali, L., Afonso, A., Denis, M., & Katz, B. F. G. (2014). Exploration of architectural spaces by blind people using auditory virtual reality for the construction of spatial knowledge. International Journal of Human-Computer Studies, 72(4), 393–407. https://doi.org/10.1016/j.ijhcs.2013.12.008
  • Rand, K. M., Creem-Regehr, S. H., & Thompson, W. B. (2015). Spatial learning while navigating with severely degraded viewing: The role of attention and mobility monitoring. Journal of Experimental Psychology. Human Perception and Performance, 41(3), 649–664. https://doi.org/10.1037/xhp0000040
  • Riazi, A., Riazi, F., Yoosfi, R., & Bahmeei, F. (2016). Outdoor difficulties experienced by a group of visually impaired Iranian people. Journal of Current Ophthalmology, 28(2), 85–90. https://doi.org/10.1016/j.joco.2016.04.002
  • Ricci, F. S., Boldini, A., Beheshti, M., Rizzo, J.-R., & Porfiri, M. (2023). A virtual reality platform to simulate orientation and mobility training for the visually impaired. Virtual Reality, 27(2), 797–814. https://doi.org/10.1007/s10055-022-00691-x
  • Ricci, F. S., Boldini, A., Ma, X., Beheshti, M., Geruschat, D. R., Seiple, W. H., Rizzo, J.-R., & Porfiri, M. (2023). Virtual reality as a means to explore assistive technologies for the visually impaired. PLOS Digital Health, 2(6), e0000275. https://doi.org/10.1371/journal.pdig.0000275
  • Richard, P., Birebent, G., Coiffet, P., Burdea, G., Gomez, D., & Langrana, N. (1996). Effect of Frame Rate and Force Feedback on Virtual Object Manipulation. Presence: Teleoperators and Virtual Environments, 5(1), 95–108. https://doi.org/10.1162/pres.1996.5.1.95
  • Sánchez, J., Espinoza, M., & Garrido, J. (2012). Videogaming for wayfinding skills in children who are blind [Paper presentation]. 9th Proceedings 9th International Conference Series on Disability, Virtual Reality and Associated Technologies.
  • Seemungal, B. M., Glasauer, S., Gresty, M. A., & Bronstein, A. M. (2007). Vestibular perception and navigation in the congenitally blind. Journal of Neurophysiology, 97(6), 4341–4356. https://doi.org/10.1152/jn.01321.2006
  • Shi, L., Tomlinson, B. J., Tang, J., Cutrell, E., McDuff, D., Venolia, G., Johns, P., & Rowan, K. (2019). Accessible video calling: Enabling nonvisual perception of visual conversation cues. Proceedings of the ACM on Human-Computer Interaction, 3(CSCW), 1–22. https://doi.org/10.1145/3359233
  • Shneiderman, B., & Plaisant, C. (2010). Designing the user interface: Strategies for effective human-computer interaction. Pearson Education India.
  • Siu, A. F., Sinclair, M., Kovacs, R., Ofek, E., Holz, C., & Cutrell, E. (2020). Virtual Reality Without Vision: A Haptic and Auditory White Cane to Navigate Complex Virtual Worlds [Paper presentation]. Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/3313831.3376353
  • Slater, M., Usoh, M., & Steed, A. (1995). Taking steps: The influence of a walking technique on presence in virtual reality. ACM Transactions on Computer-Human Interaction, 2(3), 201–219. https://doi.org/10.1145/210079.210084
  • Smulders, E., Schreven, C., Van Lankveld, W., Duysens, J., & Weerdesteyn, V. (2009). Obstacle avoidance in persons with rheumatoid arthritis walking on a treadmill. Clinical and Experimental Rheumatology, 27(5), 779–785.
  • Sylaiou, S., & Fidas, C. (2022). Supporting people with visual impairments in cultural heritage: Survey and future research directions. International Journal of Human–Computer Interaction, 1–16. https://doi.org/10.1080/10447318.2022.2098930
  • Terrier, P., & Dériaz, O. (2011). Kinematic variability, fractal dynamics and local dynamic stability of treadmill walking. Journal of NeuroEngineering and Rehabilitation, 8(1), 12. https://doi.org/10.1186/1743-0003-8-12
  • Thevin, L., Briant, C., & Brock, A. M. (2020). X-road: Virtual reality glasses for orientation and mobility training of people with visual impairments. ACM Transactions on Accessible Computing, 13(2), 1–47. https://doi.org/10.1145/3377879
  • Usoh, M., Arthur, K., Whitton, M. C., Bastos, R., Steed, A., Slater, M., & Brooks Jr, F. P. (1999). Walking > walking-in-place > flying, in virtual environments [Paper presentation]. Proceedings of the 26th annual conference on computer graphics and interactive techniques. https://doi.org/10.1145/311535.311589
  • Virtuix (2022). Omni by Virtuix - The leading and most popular VR motion platform. https://www.virtuix.com/
  • Vive (2022). VIVE United States | Next-level VR Headsets and Apps. https://www.vive.com/
  • Vrieling, A. H., van Keeken, H. G., Schoppen, T., Otten, E., Halbertsma, J. P. K., Hof, A. L., & Postema, K. (2007). Obstacle crossing in lower limb amputees. Gait & Posture, 26(4), 587–594. https://doi.org/10.1016/j.gaitpost.2006.12.007
  • Wang, Z., Li, B., Hedgpeth, T., & Haven, T. (2009). Instant tactile-audio map: Enabling access to digital maps for people with visual impairment [Paper presentation]. The 11th International ACM SIGACCESS Conference on Computers and Accessibility. https://doi.org/10.1145/1639642.1639652
  • Wickens, C. D., & Baker, P. (1995). Cognitive issues in virtual reality (Virtual Environments and Advanced Interface Design). Oxford Academic Press Inc. https://doi.org/10.1093/oso/9780195075557.003.0024
  • Witmer, B. G., & Singer, M. J. (1998). Measuring Presence in Virtual Environments: A Presence Questionnaire. Presence: Teleoperators and Virtual Environments, 7(3), 225–240. https://doi.org/10.1162/105474698565686
  • Woodrow, B., & Thomas, A. F. (1995). Virtual environments and advanced interface design. Oxford University Press, Inc.
  • Wu, W., Morina, R., Schenker, A., Gotsis, A., Chivukula, H., Gardner, M., Liu, F., Barton, S., Woyach, S., & Sinopoli, B. (2017). Echoexplorer: A game app for understanding echolocation and learning to navigate using echo cues. ICAD 2017, Pennsylvania State University.
  • Zhai, S., Milgram, P., & Buxton, W. (1996). The influence of muscle groups on performance of multiple degree-of-freedom input [Paper presentation]. Proceedings of The SIGCHI Conference on Human Factors in Computing Systems. https://doi.org/10.1145/238386.238534
  • Zhang, L., Wu, K., Yang, B., Tang, H., & Zhu, Z. (2020). Exploring virtual environments by visually impaired using a mixed reality cane without visual feedback [Paper presentation]. 2020 IEEE International Symposium on Mixed and Augmented Reality Adjunct (ISMAR-Adjunct). https://doi.org/10.1109/ISMAR-Adjunct51615.2020.00028
  • Zhang, S., Liu, Y., Song, F., Yu, D., Bo, Z., & Zhang, Z. (2023). The effect of audiovisual spatial design on user experience of bare-hand interaction in VR. International Journal of Human–Computer Interaction, 1–12. https://doi.org/10.1080/10447318.2023.2171761
  • Zhao, Y., Bennett, C. L., Benko, H., Cutrell, E., Holz, C., Morris, M. R., & Sinclair, M. (2018). Enabling people with visual impairments to navigate virtual reality with a haptic and auditory cane simulation [Paper presentation]. CHI Conference on Human Factors in Computing Systems, Proceedings of the 2018 https://doi.org/10.1145/3173574.3173690