260
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Investigating the Relative Contributions of Unexpected Vection and Postural Instability to VR Cybersickness

ORCID Icon, ORCID Icon & ORCID Icon
Received 08 Dec 2023, Accepted 06 Mar 2024, Published online: 03 Apr 2024

References

  • Akiduki, H., Nishiike, S., Watanabe, H., Matsuoka, K., Kubo, T., & Takeda, N. (2003). Visual-vestibular conflict induced by virtual reality in humans. Neuroscience Letters, 340(3), 197–200. https://doi.org/10.1016/s0304-3940(03)00098-3
  • Arcioni, B., Palmisano, S., Apthorp, D., & Kim, J. (2019). Postural stability predicts the likelihood of cybersickness in active HMD-based virtual reality. Displays, 58, 3–11. https://doi.org/10.1016/j.displa.2018.07.001
  • Bhagat, K. K., Liou, W. K., & Chang, C. Y. (2016). A cost-effective interactive 3D virtual reality system applied to military live firing training. Virtual Reality, 20(2), 127–140. https://doi.org/10.1007/s10055-016-0284-x
  • Bonato, F., Bubka, A., & Palmisano, S. (2009). Combined pitch and roll and cybersickness in a virtual environment. Aviation, Space, and Environmental Medicine, 80(11), 941–945. https://doi.org/10.3357/asem.2394.2009
  • Bonnet, C. T., Faugloire, E., Riley, M. A., Bardy, B. G., & Stoffregen, T. A. (2006). Motion sickness preceded by unstable displacements of the center of pressure. Human Movement Science, 25(6), 800–820. https://doi.org/10.1016/j.humov.2006.03.001
  • Burns, J. A., Adkins, L. K., Dailey, S., & Klein, A. M. (2017). Simulators for laryngeal and airway surgery. Otolaryngologic Clinics of North America, 50(5), 903–922. https://doi.org/10.1016/j.otc.2017.05.003
  • Chardonnet, J.-R., Mirzaei, M. A., & Mérienne, F. (2017). Features of the postural sway signal as indicators to estimate and predict visually induced motion sickness in virtual reality. International Journal of Human–Computer Interaction, 33(10), 771–785. https://doi.org/10.1080/10447318.2017.1286767
  • Clifton, J., & Palmisano, S. (2019). Effects of steering locomotion and teleporting on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 24, 453–468. https://doi.org/10.1007/s10055-019-00407-8
  • Cobb, S. V. (1999). Measurement of postural stability before and after immersion in a virtual environment. Applied Ergonomics, 30(1), 47–57. https://doi.org/10.1016/S0003-6870(98)00038-6
  • Cobb, S. V., & Nichols, S. C. (1998). Static posture tests for the assessment of postural instability after virtual environment use. Brain Research Bulletin, 47(5), 459–464. https://doi.org/10.1016/S0361-9230(98)00104-X
  • Dennison, M. S., & D'Zmura, M. (2017). Cybersickness without the wobble: Experimental results speak against postural instability theory. Applied Ergonomics, 58, 215–223. https://doi.org/10.1016/j.apergo.2016.06.014
  • Feenstra, P. J., Bos, J., & Gent, R. N. H. W. (2011). A visual display enhancing comfort by counteracting airsickness. Displays, 32(4), 194–200. https://doi.org/10.1016/j.displa.2010.11.002
  • Golding, J. F. (1998). Motion sickness susceptibility questionnaire revised and its relationship to other forms of sickness. Brain Research Bulletin, 47(5), 507–516. https://doi.org/10.1016/s0361-9230(98)00091-4
  • Hettinger, L. J., Berbaum, K. S., Kennedy, R. S., Dunlap, W. P., & Nolan, M. D. (1990). Vection and simulator sickness. Military Psychology: The Official Journal of the Division of Military Psychology, American Psychological Association, 2(3), 171–181. https://doi.org/10.1207/s15327876mp0203_4
  • Howard, I. P., & Hu, G. (2001). Visually induced reorientation illusions. Perception, 30(5), 583–600. https://doi.org/10.1068/p3106
  • Kennedy, R. S., Lane, N. E., Berbaum, K. S., & Lilienthal, M. G. (1993). Simulator sickness questionnaire: An enhanced method for quantifying simulator sickness. The International Journal of Aviation Psychology, 3(3), 203–220. https://doi.org/10.1207/s15327108ijap0303_3
  • Keshavarz, B., Hecht, H., & Lawson, B. D. (2014). Visually induced motion sickness: Causes, characteristics, and countermeasures. In K. S. Hale and K. M. Stanney (Eds.), Handbook of Virtual Environments: Design, Implementation, and Applications. (pp. 652–703). CRC Press. https://doi.org/10.1201/b17360-32
  • Keshavarz, B., Riecke, B. E., Hettinger, L. J., & Campos, J. L. (2015). Vection and visually induced motion sickness: How are they related? Frontiers in Psychology, 6, 472. https://doi.org/10.3389/fpsyg.2015.00472
  • Kooijman, L., Berti, S., Asadi, H., Nahavandi, S., & Keshavarz, B. (2023). Measuring vection: A review and critical evaluation of different methods for quantifying illusory self-motion. Behavior Research Methods, 1–19. https://doi.org/10.3758/s13428-023-02148-8
  • Koslucher, F., Haaland, E., & Stoffregen, T. A. (2016). Sex differences in visual performance and postural sway precede sex differences in visually induced motion sickness. Experimental Brain Research, 234(1), 313–322. https://doi.org/10.1007/s00221-015-4462-y
  • Koslucher, F., Haaland, E., Malsch, A., Webeler, J., & Stoffregen, T. A. (2015). Sex differences in the incidence of motion sickness induced by linear visual oscillation. Aerospace Medicine and Human Performance, 86(9), 787–793. https://doi.org/10.3357/amhp.4243.2015
  • Kuiper, O. X., Bos, J. E., Diels, C., & Schmidt, E. A. (2020). Knowing what’s coming: Anticipatory audio cues can mitigate motion sickness. Applied Ergonomics, 85, 103068. https://doi.org/10.1016/j.apergo.2020.103068
  • Lawson, B. (2014). Motion sickness symptomatology and origins. In Hale, K. S. & Stanney K. M. (Eds.). Handbook of virtual environments: Design, implementation, and applications (pp. 532–587). CRC Press. https://doi.org/10.1201/b17360-29
  • Lawson, B., & Stanney, K. M. (2021). Editorial: Cybersickness in virtual reality and augmented reality. Frontiers in Virtual Reality, 2, 2759682. https://doi.org/10.3389/frvir.2021.759682
  • Lee, A. Y., Fried, M. P., & Gibber, M. (2017). Improving rhinology skills with simulation. Otolaryngologic Clinics of North America, 50(5), 893–901. https://doi.org/10.1016/j.otc.2017.05.002
  • Litleskare, S. (2021). The relationship between postural stability and cybersickness: It’s complicated–An experimental trial assessing practical implications of cybersickness etiology. Physiology & Behavior, 236, 113422. https://doi.org/10.1016/j.physbeh.2021.113422
  • Liu, X., Liu, Y., Zhu, X., An, M., & Hu, F. (2016). Virtual reality-based navigation training for astronaut moving in a simulated space station. In Virtual, Augmented and Mixed Reality: 8th International Conference, VAMR 2016, Held as Part of HCI International 2016, Toronto, Canada, July 17-22, 2016. Proceedings. (Vol. 8, pp. 416–423). Springer International Publishing.
  • Merhi, O., Faugloire, E., Flanagan, M., & Stoffregen, T. A. (2007). Motion sickness, console video games, and head-mounted displays. Human Factors, 49(5), 920–934. https://doi.org/10.1518/001872007X230262
  • Munafo, J., Diedrick, M., & Stoffregen, T. A. (2017). The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research, 235(3), 889–901. https://doi.org/10.1007/s00221-016-4846-7
  • Nishiike, S., Okazaki, S., Watanabe, H., Akizuki, H., Imai, T., Uno, A., Kitahara, T., Horii, A., Takeda, N., & Inohara, H. (2013). The effect of visual-vestibulosomatosensory conflict induced by virtual reality on postural stability in humans. The Journal of Medical Investigation: JMI, 60(3-4), 236–239. https://doi.org/10.2152/jmi.60.236
  • Nooij, S. A., Bockisch, C. J., Bülthoff, H. H., & Straumann, D. (2021). Beyond sensory conflict: The role of beliefs and perception in motion sickness. PloS One, 16(1), e0245295. https://doi.org/10.1371/journal.pone.0245295
  • Palmisano, S., & Constable, R. (2022). Reductions in sickness with repeated exposure to HMD-based virtual reality appear to be game-specific. Virtual Reality, 26(4), 1373–1389. https://doi.org/10.1007/s10055-022-00634-6
  • Palmisano, S., Allison, R. S., Schira, M. M., & Barry, R. J. (2015). Future challenges for vection research: Definitions, functional significance, measures and neural bases. Frontiers in Psychology, 6, 193. https://doi.org/10.3389/fpsyg.2015.00193
  • Palmisano, S., Allison, R. S., Teixeira, J., & Kim, J. (2023). Cybersickness in head-mounted displays is caused by differences in the user’s virtual and physical head pose. Virtual Reality, 27(2), 1293–1313. https://doi.org/10.3389/frvir.2020.587698
  • Palmisano, S., Arcioni, B., & Stapley, P. J. (2018). Predicting vection and visually induced motion sickness based on spontaneous postural activity. Experimental Brain Research, 236(1), 315–329. https://doi.org/10.1007/s00221-017-5130-1
  • Palmisano, S., Mursic, R., & Kim, J. (2017). Vection and cybersickness generated by head-and-display motion in the Oculus Rift. Displays, 46, 1–8. https://doi.org/10.1016/j.displa.2016.11.001
  • Pfandler, M., Lazarovici, M., Stefan, P., Wucherer, P., & Weigl, M. (2017). Virtual reality-based simulators for spine surgery: A systematic review. The Spine Journal: official Journal of the North American Spine Society, 17(9), 1352–1363. https://doi.org/10.1016/j.spinee.2017.05.016
  • Pöhlmann, K. M. T., Föcker, J., Dickinson, P., Parke, A., & O'Hare, L. (2022). The relationship between vection, cybersickness and head movements elicited by illusory motion in virtual reality. Multisensory Research, 71, 1–40. https://doi.org/10.1016/j.displa.2021.102111
  • Reason, J. T. (1978). Motion sickness adaptation: A neural mismatch model. Journal of the Royal Society of Medicine, 71(11), 819–829. https://doi.org/10.1177/014107687807101109
  • Reason, J. T., & Brand, J. J. (1975). Motion sickness. Academic press.
  • Riccio, G. E., & Stoffregen, T. A. (1991). An ecological theory of motion sickness and postural instability. Ecological Psychology, 3(3), 195–240. https://doi.org/10.1207/s15326969eco0303_2
  • Risi, D., & Palmisano, S. (2019). Effects of postural stability, active control, exposure duration and repeated exposures on HMD induced cybersickness. Displays, 60, 9–17. https://doi.org/10.1016/j.displa.2019.08.003
  • Stanney, K. M., Kennedy, R. S., & Hale, K. S. (2014). Virtual environment usage protocols. In Hale, K. S. & Stanney, K. M. (Eds.), Handbook of virtual environments: Design, implementation and applications (pp 532–587.). CRC Press. https://doi.org/10.1201/b17360
  • Stoffregen, T. A., & Riccio, G. E. (1991). An ecological critique of the sensory conflict theory of motion sickness. Ecological Psychology, 3(3), 159–194. https://doi.org/10.1207/s15326969eco0303_1
  • Stoffregen, T. A., & Smart, L. J. Jr. (1998). Postural instability precedes motion sickness. Brain Research Bulletin, 47(5), 437–448. https://doi.org/10.1016/s0361-9230(98)00102-6
  • Stoffregen, T. A., Chen, Y. C., & Koslucher, F. C. (2014). Motion control, motion sickness, and the postural dynamics of mobile devices. Experimental Brain Research, 232(4), 1389–1397. https://doi.org/10.1007/s00221-014-3859-3
  • Stoffregen, T. A., Faugloire, E., Yoshida, K., Flanagan, M. B., & Merhi, O. (2008). Motion sickness and postural sway in console video games. Human Factors, 50(2), 322–331. https://doi.org/10.1518/001872008X250755
  • Stoffregen, T. A., Hettinger, L. J., Haas, M. W., Roe, M. M., & Smart, L. J. (2000). Postural instability and motion sickness in a fixed-base flight simulator. Human Factors, 42(3), 458–469. https://doi.org/10.1518/001872000779698097
  • Stoffregen, T. A., Yoshida, K., Villard, S., Scibora, L., & Bardy, B. G. (2010). Stance width influences postural stability and motion sickness. Ecological Psychology, 22(3), 169–191. https://doi.org/10.1080/10407413.2010.496645
  • Teixeira, J., & Palmisano, S. (2021). Effects of dynamic field-of-view restriction on cybersickness and presence in HMD-based virtual reality. Virtual Reality, 25(2), 433–445. https://doi.org/10.1007/s10055-020-00466-2
  • Teixeira, J., Miellet, S., & Palmisano, S. (2022). Unexpected vection exacerbates cybersickness during HMD-based virtual reality. Frontiers in Virtual Reality, 3, 43. https://doi.org/10.3389/frvir.2022.860919
  • Teixeira, J., Miellet, S., & Palmisano, S. (2023). Unexpected vection predicts the likelihood and severity of sickness during HMD based virtual reality. Journal of Vision, 23(9), 5036–5036. [Vision Sciences Society Annual Meeting Abstract]. https://doi.org/10.1167/jov.23.9.5036
  • Villard, S. J., Flanagan, M. B., Albanese, G. M., & Stoffregen, T. A. (2008). Postural instability and motion sickness in a virtual moving room. Human Factors, 50(2), 332–345. https://doi.org/10.1518/001872008X250728
  • Wilcox, R. R. (2011). Introduction to robust estimation and hypothesis testing. Academic press.
  • Yokota, Y., Aoki, M., Mizuta, K., Ito, Y., & Isu, N. (2005). Motion sickness susceptibility associated with visually induced postural instability and cardiac autonomic responses in healthy subjects. Acta Oto-Laryngologica, 125(3), 280–285. https://doi.org/10.1080/00016480510003192
  • Yuen, K. K. (1974). The two-sample trimmed t for unequal population variances. Biometrika, 61(1), 165–170. https://doi.org/10.2307/2334299