88
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Tangible and Mid-Air Interactions in Hand-Held Augmented Reality for Upper Limb Rehabilitation: An Evaluation of User Experience and Motor Performance

, , , , &
Received 30 Sep 2023, Accepted 09 Apr 2024, Published online: 08 May 2024

References

  • Alamri, A., Cha, J., & El Saddik, A. (2010). AR-REHAB: An augmented reality framework for poststroke-patient rehabilitation. IEEE Transactions on Instrumentation and Measurement, 59(10), 2554–2563. https://doi.org/10.1109/TIM.2010.2057750
  • Alsuradi, H., Pawar, C., Park, W., & Eid, M. (2020, March). Detection of tactile feedback on touch-screen devices using EEG data. In 2020 IEEE Haptics Symposium (HAPTICS) (pp. 775–780). IEEE.
  • Bai, H., Lee, G. A., Ramakrishnan, M., & Billinghurst, M. (2014). 3D gesture interaction for handheld augmented reality. In SIGGRAPH Asia 2014 Mobile Graphics and Interactive Applications (pp. 1–6). Association for Computing Machinery. https://doi.org/10.1145/2669062.2669073
  • Baigi, S. F. M., Sarbaz, M., Ghaddaripouri, K., Noori, N., & Kimiafar, K. (2022). The effect of tele-rehabilitation on improving physical activity in patients with chronic obstructive pulmonary disease: A systematic review of randomized controlled clinical trials. Frontiers in Health Informatics, 11(1), 113. https://doi.org/10.30699/fhi.v11i1.359
  • Bozgeyikli, E., & Bozgeyikli, L. L. (2021). Evaluating object manipulation interaction techniques in mixed reality: Tangible user interfaces and gesture. In 2021 IEEE Virtual Reality and 3D User Interfaces (VR) (pp. 778–787). IEEE.
  • Burke, J. W., McNeill, M. D. J., Charles, D. K., Morrow, P. J., Crosbie, J. H., & McDonough, S. M. (2010). Augmented reality games for upper-limb stroke rehabilitation. In 2010 Second International Conference on Games and Virtual Worlds for Serious Applications (pp. 75–78). IEEE.
  • Calabrò, R. S., Naro, A., Russo, M., Leo, A., De Luca, R., Balletta, T., Buda, A., La Rosa, G., Bramanti, A., & Bramanti, P. (2017). The role of virtual reality in improving motor performance as revealed by EEG: A randomized clinical trial. Journal of Neuroengineering and Rehabilitation, 14(1), 53. https://doi.org/10.1186/s12984-017-0268-4
  • Cao, Q., Yu, H., Charisse, P., Qiao, S., & Stevens, B. (2023). Is high-fidelity important for human-like virtual avatars in human-computer interactions? International Journal of Network Dynamics and Intelligence, 2(1), 15–23. https://doi.org/10.53941/ijndi0201008
  • Chang, E., Lee, Y., & Yoo, B. (2023). A user study on the comparison of view interfaces for VR-AR communication in XR remote collaboration. International Journal of Human–Computer Interaction, 1–16. https://doi.org/10.1080/10447318.2023.2241294
  • Chang, H. J., Huang, K., & Wu, C. (2006). Determination of sample size in using central limit theorem for Weibull distribution. International Journal of Information and Management Sciences, 17(3), 153–174.
  • Chang, H. J., Wu, C. H., Ho, J. F., & Chen, P. Y. (2008). On sample size in using central limit theorem for gamma distribution. Information and Management Sciences, 19(1), 153–174.
  • Chessa, M., Maiello, G., Klein, L. K., Paulun, V. C., & Solari, F. (2019). Grasping objects in immersive virtual reality. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 1749–1754). IEEE.
  • Clark, W. E., Sivan, M., & O'Connor, R. J. (2019). Evaluating the use of robotic and virtual reality rehabilitation technologies to improve function in stroke survivors: A narrative review. Journal of Rehabilitation and Assistive Technologies Engineering, 6, 2055668319863557. https://doi.org/10.1177/2055668319863557
  • Condino, S., Turini, G., Viglialoro, R., Gesi, M., & Ferrari, V. (2019). Wearable augmented reality application for shoulder rehabilitation. Electronics, 8(10), 1178. https://doi.org/10.3390/electronics8101178
  • Düwel, T., Herbig, N., Kahl, D., & Krüger, A. (2020). Combining embedded computation and image tracking for composing tangible augmented reality. In Extended Abstracts of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–7). Association for Computing Machinery. https://doi.org/10.1145/3334480.3383043
  • Duerler, P., Brem, S., Fraga-González, G., Neef, T., Allen, M., Zeidman, P., Stämpfli, P., Vollenweider, F. X., & Preller, K. H. (2022). Psilocybin induces aberrant prediction error processing of tactile mismatch responses—a simultaneous EEG–fMRI study. Cerebral Cortex, 32(1), 186–196. https://doi.org/10.1093/cercor/bhab202
  • Elor, A., Kurniawan, S., & Teodorescu, M. (2018). Towards an immersive virtual reality game for smarter post-stroke rehabilitation. In 2018 IEEE International Conference on Smart Computing (SMARTCOMP) (pp. 219–225). IEEE.
  • Figeys, M., Koubasi, F., Hwang, D., Hunder, A., Miguel-Cruz, A., & Ríos Rincón, A. (2023). Challenges and promises of mixed-reality interventions in acquired brain injury rehabilitation: A scoping review. International Journal of Medical Informatics, 179, 105235. https://doi.org/10.1016/j.ijmedinf.2023.105235
  • Fritz, D., Mossel, A., & Kaufmann, H. (2014). Evaluating RGB + D hand posture detection methods for mobile 3D interaction. In Proceedings of the 2014 Virtual Reality International Conference (pp. 1–4). Association for Computing Machinery.
  • Garcia Hernandez, N. V., Buccelli, S., Laffranchi, M., & De Michieli, L. (2023). Mixed reality-based Exergames for upper limb robotic rehabilitation. In Companion of the 2023 ACM/IEEE International Conference on Human-Robot Interaction (pp. 447–451). Association for Computing Machinery. https://doi.org/10.1145/3568294.3580124
  • Geng, S., Zhu, C., Jin, Y., Wang, L., & Tan, H. (2022). Gaze control system for tracking Quasi-1D high-speed moving object in complex background. Systems Science & Control Engineering, 10(1), 367–376. https://doi.org/10.1080/21642583.2022.2063204
  • Gianola, S., Stucovitz, E., Castellini, G., Mascali, M., Vanni, F., Tramacere, I., Banfi, G., & Tornese, D. (2020). Effects of early virtual reality-based rehabilitation in patients with total knee arthroplasty: A randomized controlled trial. Medicine, 99(7), e19136. https://doi.org/10.1097/MD.0000000000019136
  • Gorman, C., & Gustafsson, L. (2022). The use of augmented reality for rehabilitation after stroke: A narrative review. Disability and Rehabilitation-Assistive Technology, 17(4), 409–417. https://doi.org/10.1080/17483107.2020.1791264
  • Guo, S., Li, L., Liu, H., Wu, S., Zheng, Y., & Niu, J. (2023). Bimanual asymmetric coordination in a three-dimensional zooming task based on leap motion: Implications for upper limb rehabilitation. International Journal of Human–Computer Interaction, 40(8), 1931–1942. https://doi.org/10.1080/10447318.2023.2242728
  • Ha, T., & Woo, W. (2010). An empirical evaluation of virtual hand techniques for 3D object manipulation in a tangible augmented reality environment. In 2010 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 91–98). IEEE.
  • Han, D. T., Suhail, M., & Ragan, E. D. (2018). Evaluating remapped physical reach for hand interactions with passive haptics in virtual reality. IEEE Transactions on Visualization and Computer Graphics, 24(4), 1467–1476. https://doi.org/10.1109/TVCG.2018.2794659
  • Hayre, C. M., Muller, D. J., & Scherer, M. J. (2020). Virtual reality in health and rehabilitation. CRC Press.
  • Hettiarachchi, A., & Wigdor, D. (2016). Annexing reality: Enabling opportunistic use of everyday objects as tangible proxies in augmented reality. In Proceedings of the 2016 CHI Conference on Human Factors in Computing Systems (pp. 1957–1967). Association for Computing Machinery.
  • Höll, M., Oberweger, M., Arth, C., & Lepetit, V. (2018). Efficient physics-based implementation for realistic hand-object interaction in virtual reality. In 2018 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 175–182). IEEE.
  • Hossain, M. S., Hardy, S., Alamri, A., Alelaiwi, A., Hardy, V., & Wilhelm, C. (2016). AR-based serious game framework for post-stroke rehabilitation. Multimedia Systems, 22(6), 659–674. https://doi.org/10.1007/s00530-015-0481-6
  • Hussain, M., & Park, J. (2023). Effect of transparency levels and real-world backgrounds on the user interface in augmented reality environments. International Journal of Human–Computer Interaction, 1–10. https://doi.org/10.1080/10447318.2023.2212218
  • Hurd, O., Kurniawan, S., & Teodorescu, M. (2019). Virtual reality video game paired with physical monocular blurring as accessible therapy for amblyopia. In 2019 IEEE Conference on Virtual Reality and 3D User Interfaces (VR) (pp. 492–499). IEEE.
  • Jobst, B. C., Williamson, P. D., Thadani, V. M., Gilbert, K. L., Holmes, G. L., Morse, R. P., Darcey, T. M., Duhaime, A.-C., Bujarski, K. A., & Roberts, D. W. (2010). Intractable occipital lobe epilepsy: Clinical characteristics and surgical treatment. Epilepsia, 51(11), 2334–2337. https://doi.org/10.1111/j.1528-1167.2010.02673.x
  • Kao, S. C., Huang, C. J., & Hung, T. M. (2013). Frontal midline theta is a specific indicator of optimal attentional engagement during skilled putting performance. Journal of Sport & Exercise Psychology, 35(5), 470–478. https://doi.org/10.1123/jsep.35.5.470
  • Kim, H., & Park, J. M. (2023). Providing dual awareness using multimodal cues for collaborative manipulation in virtual environments. International Journal of Human–Computer Interaction, 1–15. https://doi.org/10.1080/10447318.2023.2188533
  • Kim, K., Choi, B., & Lim, W. (2019). The efficacy of virtual reality assisted versus traditional rehabilitation intervention on individuals with functional ankle instability: A pilot randomized controlled trial. Disability and Rehabilitation. Assistive Technology, 14(3), 276–280. https://doi.org/10.1080/17483107.2018.1429501
  • Kratz, S., Rohs, M., Guse, D., Müller, J., Bailly, G., Nischt, M. (2012). PalmSpace: Continuous around-device gestures vs. multitouch for 3D rotation tasks on mobile devices. In Proceedings of the International Working Conference on Advanced Visual Interfaces (pp. 181–188). Association for Computing Machinery.
  • Kwon, E., Kim, G. J., Lee, S. (2009). Effects of sizes and shapes of props in tangible augmented reality. In 2009 8th IEEE International Symposium on Mixed and Augmented Reality (pp. 201–202.). IEEE.
  • Li, J., & Jin, Y. (2022). Research on the control strategy of active upper limb rehabilitation robot based on force feedback. Rehabilitation, 4(7), 35–40. https://doi.org/10.25236/IJFET.2022.040708
  • Linder, S. M., Rosenfeldt, A. B., Bay, R. C., Sahu, K., Wolf, S. L., & Alberts, J. L. (2015). Improving quality of life and depression after stroke through telerehabilitation. The American Journal of Occupational Therapy, 69(2), 6902290020p1–6902290020p10. https://doi.org/10.5014/ajot.2015.014498
  • Liu, J., Mei, J., Zhang, X., Lu, X., & Huang, J. (2017). Augmented reality-based training system for hand rehabilitation. Multimedia Tools and Applications, 76(13), 14847–14867. https://doi.org/10.1007/s11042-016-4067-x
  • Mitchell, J., Shirota, C., & Clanchy, K. (2023). Factors that influence the adoption of rehabilitation technologies: A multi-disciplinary qualitative exploration. Journal of Neuroengineering and Rehabilitation, 20(1), 80. https://doi.org/10.1186/s12984-023-01194-9
  • Ocampo, R., & Tavakoli, M. (2019). Visual-haptic colocation in robotic rehabilitation exercises using a 2D augmented-reality display. In 2019 International Symposium on Medical Robotics (ISMR) (pp. 1–7). IEEE.
  • Oliveira, S. M. S. d., Medeiros, C. S. P. d., Pacheco, T. B. F., Bessa, N. P. O. S., Silva, F. G. M., Tavares, N. S. A., Rego, I. A. O., Campos, T. F., & Cavalcanti, F. A. d C. (2018). Electroencephalographic changes using virtual reality program. Neurological Research, 40(3), 160–165. https://doi.org/10.1080/01616412.2017.1420584
  • Ortega, E. V., Aksöz, E. A., Buetler, K. A., & Marchal-Crespo, L. (2022). Enhancing touch sensibility by sensory retraining in a sensory discrimination task via haptic rendering. Frontiers in Rehabilitation Sciences, 3, 929431. https://doi.org/10.3389/fresc.2022.929431
  • Palmisano, S., Allison, R. S., Davies, R. G., Wagner, P., & Kim, J. (2023). Effects of constant and time-varying display lag on DVP and cybersickness when making head-movements in virtual reality. International Journal of Human–Computer Interaction, 1–18. https://doi.org/10.1080/10447318.2023.2291613
  • Phelan, I., Furness, P. J., Matsangidou, M., Carrion-Plaza, A., Dunn, H., Dimitri, P., & Lindley, S. A. (2023). Playing your pain away: Designing a virtual reality physical therapy for children with upper limb motor impairment. Virtual Reality, 27(1), 173–185. https://doi.org/10.1007/s10055-021-00522-5
  • Piumsomboon, T., Altimira, D., Kim, H., Clark, A., Lee, G., & Billinghurst, M. (2014). Grasp-shell vs gesture-speech: A comparison of direct and indirect natural interaction techniques in augmented reality. In 2014 IEEE International Symposium on Mixed and Augmented Reality (ISMAR) (pp. 73–82). IEEE.
  • Ramírez, E. R., Petrie, R., Chan, K., Signal, N. (2018). A tangible interface and augmented reality game for facilitating sit-to-stand exercises for stroke rehabilitation. In Proceedings of the 8th International Conference on the Internet of Things (pp. 1–4). Association for Computing Machinery. https://doi.org/10.1145/3277593.3277635
  • Rogers, J. M., Jensen, J., Valderrama, J. T., Johnstone, S. J., & Wilson, P. H. (2021). Single-channel EEG measurement of engagement in virtual rehabilitation: A validation study. Virtual Reality, 25(2), 357–366. https://doi.org/10.1007/s10055-020-00460-8
  • Roosink, M., Robitaille, N., McFadyen, B. J., Hébert, L. J., Jackson, P. L., Bouyer, L. J., & Mercier, C. (2015). Real-time modulation of visual feedback on human full-body movements in a virtual mirror: Development and proof-of-concept. Journal of Neuroengineering and Rehabilitation, 12(1), 2. https://doi.org/10.1186/1743-0003-12-2
  • Rui, Z., & Gu, Z. (2021). A review of EEG and fMRI measuring aesthetic processing in visual user experience research. Computational Intelligence and Neuroscience, 2021, 2070209–2070227. https://doi.org/10.1155/2021/2070209
  • Rui, Z., Chang, D., & Gu, Z. (2023). Event-related potential and oscillatory cortical activities of artistic methodology in information visualization design in human–computer interface. International Journal of Human-Computer Studies, 177, 103066. https://doi.org/10.1016/j.ijhcs.2023.103066
  • Rui, Z., & Gu, Z. (2023). Use of event-related potentials to assess visual–auditory multisensory information in the decision-making processes related to fast-consuming behavior. International Journal of Human–Computer Interaction, 1–24. https://doi.org/10.1080/10447318.2023.2260983
  • Samaha, J., Boutonnet, B., Postle, B. R., & Lupyan, G. (2018). Effects of meaningfulness on perception: Alpha-band oscillations carry perceptual expectations and influence early visual responses. Scientific Reports, 8(1), 6606. https://doi.org/10.1038/s41598-018-25093-5
  • Sarfo, F. S., Adamu, S., Awuah, D., & Ovbiagele, B. (2017). Tele-neurology in sub-Saharan Africa: A systematic review of the literature. Journal of the Neurological Sciences, 380, 196–199. https://doi.org/10.1016/j.jns.2017.07.037
  • Schrepp, M., Hinderks, A., & Thomaschewski, J. (2017). Design and evaluation of a short version of the user experience questionnaire (UEQ-S). International Journal of Interactive Multimedia and Artificial Intelligence, 4(6), 103–108. https://doi.org/10.9781/ijimai.2017.09.001
  • Shi, J., Wang, J., Lang, J., Zhang, Z., Bi, Y., Liu, R., Jiang, S., & Hou, L. (2020). Effect of different motor skills training on motor control network in the frontal lobe and basal ganglia. Biology of Sport, 37(4), 405–413. https://doi.org/10.5114/biolsport.2020.96855
  • Shi, Y. X., Tian, J. H., Yang, K. H., & Zhao, Y. (2011). Modified constraint-induced movement therapy versus traditional rehabilitation in patients with upper-extremity dysfunction after stroke: A systematic review and meta-analysis. Archives of Physical Medicine and Rehabilitation, 92(6), 972–982. https://doi.org/10.1016/j.apmr.2010.12.036
  • Specht, J., Schroeder, H., Krakow, K., Meinhardt, G., Stegmann, B., & Meinhardt-Injac, B. (2021). Acceptance of immersive head-mounted display virtual reality in stroke patients. Computers in Human Behavior Reports, 4, 100141. https://doi.org/10.1016/j.chbr.2021.100141
  • Sterna, R., Cybulski, A., Igras-Cybulska, M., Pilarczyk, J., Segiet, N., & Kuniecki, M. (2023). How Behavioral, photographic, and interactional realism influence the sense of co-presence in VR. An investigation with psychophysiological measurement. International Journal of Human–Computer Interaction, 1–16. https://doi.org/10.1080/10447318.2023.2285641
  • Sun, W., Huang, M., Wu, C., & Yang, R. (2022a). Exploring virtual object translation in head-mounted augmented reality for upper limb motor rehabilitation with motor performance and eye movement characteristics. In Adjunct Proceedings of the 35th Annual ACM Symposium on User Interface Software and Technology (pp. 1–3). Association for Computing Machinery. https://doi.org/10.1145/3526114.3558734
  • Sun, W., Huang, M., Wu, C., & Yang, R. (2022b). Sense of agency on handheld AR for virtual object translation. In 2022 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 838–839). IEEE.
  • Sun, W., Huang, M., Wu, C., Yang, R., Han, J., & Yue, Y. (2023a). Evaluating the feeling of control in virtual object translation on 2D interfaces. AI Edam, 37, e9. https://doi.org/10.1017/S0890060423000033
  • Sun, W., Huang, M., Yang, R., Han, J., & Yue, Y. (2021). Mental workload evaluation of virtual object manipulation on WebVR: An EEG study. In 2021 14th International Conference on Human System Interaction (HSI) (pp. 1–6). IEEE.
  • Sun, X., Ding, J., Dong, Y., Ma, X., Wang, R., Jin, K., Zhang, H., & Zhang, Y. (2023b). A survey of technologies facilitating home and community-based stroke rehabilitation. International Journal of Human–Computer Interaction, 39(5), 1016–1042. https://doi.org/10.1080/10447318.2022.2050545
  • Tawara, T., & Ono, K. (2010). A framework for volume segmentation and visualization using augmented reality. In 2010 IEEE Symposium on 3D User Interfaces (3DUI) (pp. 121–122). IEEE. https://doi.org/10.1109/3DUI.2010.5444707
  • Van den Bussche, E., Alves, M., Murray, Y. P., & Hughes, G. (2020). The effect of cognitive effort on the sense of agency. PLOS One, 15(8), e0236809. https://doi.org/10.1371/journal.pone.0236809
  • Vaquero-Melchor, D., & Bernardos, A. M. (2019). Enhancing interaction with augmented reality through mid-air haptic feedback: Architecture design and user feedback. Applied Sciences, 9(23), 5123. https://doi.org/10.3390/app9235123
  • Viglialoro, R. M., Turini, G., Carbone, M., Condino, S., Mamone, V., Coluccia, N., Dell’Agli, S., Morucci, G., Ryskalin, L., Ferrari, V., & Gesi, M. (2023). A projected AR serious game for shoulder rehabilitation using hand-finger tracking and performance metrics: A preliminary study on healthy subjects. Electronics, 12(11), 2516. https://doi.org/10.3390/electronics12112516
  • Viglialoro, R. M., Condino, S., Turini, G., Carbone, M., Ferrari, V., & Gesi, M. (2021). Augmented reality, mixed reality, and hybrid approach in healthcare simulation: A systematic review. Applied Sciences, 11(5), 2338. https://doi.org/10.3390/app11052338
  • Viglialoro, R. M., Condino, S., Turini, G., Carbone, M., Ferrari, V., & Gesi, M. (2019). Review of the augmented reality systems for shoulder rehabilitation. Information, 10(5), 154. https://doi.org/10.3390/info10050154
  • Wang, L., Huang, M., Yang, R., Qin, C., Han, J., & Liang, H. N. (2023). Effect of reaching movement modulation on experience of control in virtual reality. International Journal of Human–Computer Interaction, 1–18. https://doi.org/10.1080/10447318.2023.2290382
  • Wang, L., Huang, M., Wang, Y., Yang, R., Liao, K. L., Zhang, J., & Sun, W. (2021). Movement modulation in virtual rehabilitation: its influence on agency and motor performance. In 2021 IEEE 9th International Conference on Serious Games and Applications for Health (SeGAH) (pp. 1–8). IEEE.
  • Wang, L., Huang, M., Yang, R., Liang, H. N., Han, J., & Sun, Y. (2022). Survey of movement reproduction in immersive virtual rehabilitation. IEEE Transactions on Visualization and Computer Graphics, 29(4), 2184–2202. https://doi.org/10.1109/TVCG.2022.3142198
  • Wang, D., Shi, S., Lu, J., Hu, Z., & Chen, J. (2023). Research on gas pipeline leakage model identification driven by digital twin. Systems Science & Control Engineering, 11(1), 2180687. https://doi.org/10.1080/21642583.2023.2180687
  • Wedyan, M., Al-Jumaily, A., & Dorgham, O. (2020). The use of augmented reality in the diagnosis and treatment of autistic children: A review and a new system. Multimedia Tools and Applications, 79(25–26), 18245–18291. https://doi.org/10.1007/s11042-020-08647-6
  • Wei, W., McElroy, C., & Dey, S. (2019). Towards on-demand virtual physical therapist: Machine learning-based patient action understanding, assessment, and task recommendation. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 27(9), 1824–1835. https://doi.org/10.1109/TNSRE.2019.2934097
  • Wei, M., Huang, M., & Ni, J. (2023). Cross-subject EEG channel selection method for lower limb brain-computer interface. International Journal of Network Dynamics and Intelligence, 2(3), 100008. https://doi.org/10.53941/ijndi.2023.100008
  • Wu, C., Sun, W., Huang, M., & Yang, R. (2023). Feeling of control for virtual object manipulation in handheld AR. In 2023 IEEE Conference on Virtual Reality and 3D User Interfaces Abstracts and Workshops (VRW) (pp. 623–624). IEEE.
  • Xu, N., Li, Y., Wei, X., Xie, L., Yu, L., & Liang, H. N. (2023). CubeMuseum AR: A tangible augmented reality interface for cultural heritage learning and museum gifting. International Journal of Human–Computer Interaction, 40(6), 1409–1437.
  • Yang, Z., Jie, S., Shiqi, L., Ping, C., Shengjia, N. (2018). Tangible interactive upper limb training device. In Proceedings of the 2018 ACM Conference Companion Publication on Designing Interactive Systems (pp. 1–5). Association for Computing Machinery. https://doi.org/10.1145/3197391.3205403
  • Ying, W., & Aimin, W. (2017). Augmented reality-based upper limb rehabilitation system. In 2017 13th IEEE International Conference on Electronic Measurement & Instruments (ICEMI) (pp. 426–430). IEEE.
  • Yu, N., Yang, R., & Huang, M. (2022). Deep common spatial pattern based motor imagery classification with improved objective function. International Journal of Network Dynamics and Intelligence, 1(1), 73–84. https://doi.org/10.53941/ijndi0101007
  • Zhang, W., Su, C., & He, C. (2020). Rehabilitation exercise recognition and evaluation based on smart sensors with deep learning framework. IEEE Access, 8, 77561–77571. https://doi.org/10.1109/ACCESS.2020.2989128
  • Zheng, Q., Wang, L., Ke, W., & Im, S. K. (2023). VVIR-OM: Efficient object manipulation in VR with variable virtual interaction region. International Journal of Human–Computer Interaction, 1–14. https://doi.org/10.1080/10447318.2023.2286126

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.