128
Views
0
CrossRef citations to date
0
Altmetric
Survey Article

On the Remarkable Advancement of Assistive Robotics in Human-Robot Interaction-Based Health-Care Applications: An Exploratory Overview of the Literature

ORCID Icon & ORCID Icon
Received 19 Dec 2023, Accepted 08 Apr 2024, Published online: 24 Apr 2024

References

  • Abubakar, S., Das, S. K., Robinson, C., Saadatzi, M. N., Cynthia, Logsdon, M., Mitchell, H., Chlebowy, D., & Popa, D. O. (2020). ARNA, a service robot for nursing assistance: System overview and user acceptability. In IEEE International Conference on Automation Science and Engineering (pp. 1408–1414). IEEE.
  • Akalin, N., & Loutfi, A. (2021). Reinforcement learning approaches in social robotics. Sensors, 21(4), 1292. https://doi.org/10.3390/s21041292
  • Al-Taee, M. A., Kapoor, R., Garrett, C., & Choudhary, P. (2016). Acceptability of robot assistant in management of type 1 diabetes in children. Diabetes Technology & Therapeutics, 18(9), 551–554. https://doi.org/10.1089/dia.2015.0428
  • Alemi, M., Ghanbarzadeh, A., Meghdari, A., & Moghadam, L. J. (2015). Clinical application of a humanoid robot in pediatric cancer interventions. International Journal of Social Robotics, 8(5), 743–759. https://doi.org/10.1007/s12369-015-0294-y
  • Arksey, H., & O'Malley, L. (2005). Scoping studies: Towards a methodological framework. International Journal of Social Research Methodology, 8(1), 19–32. https://doi.org/10.1080/1364557032000119616
  • Balasubramanian, S., Wei, H. R., Perez, M., Shepard, B., Koeneman, E., Koeneman, J., & He, J. (2008). Rupert: An exoskeleton robot for assisting rehabilitation of arm functions. Virtual Rehabilitation, 163–167. https://doi.org/10.1109/ICVR.2008.4625154
  • Bell, T. E. (1985). Robots in the home: Promises. IEEE Spectrum, 22(5), 51–55. https://doi.org/10.1109/MSPEC.1985.6370652
  • Bemelmans, R., Gelderblom, G. J., Jonker, P., & De Witte, L. (2012). Socially assistive robots in elderly care: A systematic review into effects and effectiveness. Journal of the American Medical Directors Association, 13(2), 114–120.e1. https://doi.org/10.1016/j.jamda.2010.10.002
  • Bemelmans, R., Gelderblom, G. J., Jonker, P., & de Witte, L. (2015). Effectiveness of robot paro in intramural psychogeriatric care: A multicenter quasi-experimental study. Journal of the American Medical Directors Association, 16(11), 946–950. https://doi.org/10.1016/j.jamda.2015.05.007
  • Beraldo, G., Menegatti, E., De Tommasi, V., Mancin, R., & Benini, F. (2019). A preliminary investigation of using humanoid social robots as non-pharmacological techniques with children. In IEEE International Conference on Advanced Robotics and its Social Impacts (ARSO) (pp. 393–400). IEEE. https://doi.org/10.1109/ARSO46408.2019.8948760
  • Beran, T. N., Ramirez-Serrano, A., Vanderkooi, O. G., & Kuhn, S. (2013). Reducing children’s pain and distress towards flu vaccinations: A novel and effective application of humanoid robotics. Vaccine, 31(25), 2772–2777. https://doi.org/10.1016/j.vaccine.2013.03.056
  • Bezerra, C. A. D., & Zampieri, D. E. (2004). Biped robots: The state of art. In International Symposium on History of Machines and Mechanisms (pp. 371–389). Springer.
  • Bhaumik, A. (2018). From AI to robotics : Mobile, social, and sentient robots. CRC Press, Taylor & Francis Group.
  • Breazeal, C. (1998). A motivational system for regulating human-robot interaction. In Aaai/iaai. (pp. 54–62). American Association for Artificial Intelligence.
  • Capek, K. (1971). RUR (Robots Universales Rossum). Escuelas Profesionales Sagrado Corazón.
  • Carberry, J., Hinchly, G., Buckerfield, J., Tayler, E., Burton, T., Madgwick, S., Vaidyanathan, & R. (2011). Parametric design of an active ankle foot orthosis with passive compliance. In IEEE Symposium on Computer-Based Medical Systems. IEEE.
  • Chalvatzaki, G., Papageorgiou, X. S., Tzafestas, C. S. (2017). Towards a user-adaptive context-aware robotic walker with a pathological gait assessment system: First experimental study. In IEEE International Conference on Intelligent Robots and Systems (pp. 5037–5042). IEEE.
  • Chen, Y., Hu, J., Peng, L., & Hou, Z. (2014). The FES-assisted control for a lower limb rehabilitation robot: Simulation and experiment. Robotics and Biomimetics, 1(1), 1–20. https://doi.org/10.1186/s40638-014-0002-7
  • Cheng, L., Chen, M., & Li, Z. (2018). Design and control of a wearable hand rehabilitation robot. IEEE Access, 6, 74039–74050. https://doi.org/10.1109/ACCESS.2018.2884451
  • Christoforou, E. G., Avgousti, S., Ramdani, N., Novales, C., & Panayides, A. S. (2020). The upcoming role for nursing and assistive robotics: Opportunities and challenges ahead. Frontiers in Digital Health, 2, 39. https://doi.org/10.3389/fdgth.2020.585656
  • Clarke, R. (1993). Asimov’s laws of robotics: Implications for information technology-Part 1. Computer, 26(12), 53–61. https://doi.org/10.1109/2.247652
  • Colombo, G., Joerg, M., Schreier, R., & Dietz, V. (2000). Treadmill training of paraplegic patients using a robotic orthosis. Journal of Rehabilitation Research and Development, 37(6), 693–700.
  • Costa, N., Bezdicek, M., Brown, M., Gray, J. O., Caldwell, D. G., & Hutchins, S. (2006). Joint motion control of a powered lower limb orthosis for rehabilitation. International Journal of Automation and Computing, 3(3), 271–281. https://doi.org/10.1007/s11633-006-0271-x
  • Csala, E., Németh, G., & Zainko, C. (2012). Application of the NAO humanoid robot in the treatment of marrow-transplanted children. In 3rd IEEE International Conference on Cognitive Infocommunications (pp. 655–659). IEEE.
  • Dautenhahn, K. (2004). Socially intelligent agents in human primate culture. Uniwersytet Śląski, 7(1), 45–72. http://hdl.handle.net/2299/3809
  • Di Napoli, C., Ercolano, G., & Rossi, S. (2023). Personalized home-care support for the elderly: A field experience with a social robot at home. User Modeling and User-Adapted Interaction, 33(2), 405–440. https://doi.org/10.1007/s11257-022-09333-y
  • Ding, J., Lim, Y. J., Solano, M., Shadle, K., Park, C., Lin, C., & Hu, J. (2014). Giving patients a lift - The robotic nursing assistant (RoNA). In IEEE Conference on Technologies for Practical Robot Applications. IEEE.
  • Ding, M., Ikeura, R., Mukai, T., Nagashima, H., Hirano, S., Matsuo, K., Sun, M., Jiang, C., & Hosoe, S. (2012). Comfort estimation during lift-up using nursing-care robot - RIBA. In 1st International Conference on Innovative Engineering Systems (pp. 225–230). IEEE.
  • Ding, Y., & Tay, E. H. (2019). An interactive training system for upper limb rehabilitation using visual and auditory feedback. In Proceedings of the 5th International Conference on Robotics and Artificial Intelligence (pp. 54–58). Association for Computing Machinery. https://doi.org/10.1145/3373724.3373728
  • Dong, M., Yuan, J., & Li, J. (2022). A lower limb rehabilitation robot with rigid-flexible characteristics and multi-mode exercises. Machines, 10(10), 918. https://doi.org/10.3390/machines10100918
  • Engelberger, J. F. (1988). Health-care robotics goes commercial: The ‘HelpMate’ experience. Robotica, 11(6), 517–523. https://doi.org/10.1017/S0263574700019354
  • Feil-Seifer, D., & Mataric, M. (2011). Socially assistive robotics. IEEE Robotics & Automation Magazine, 18(1), 24–31. https://doi.org/10.1109/MRA.2010.940150
  • Feng, G., Zhang, J., Zuo, G., Li, M., Jiang, D., & Yang, L. (2022). Dual-modal hybrid control for an upper-limb rehabilitation robot. Machines, 10(5), 324. https://doi.org/10.3390/machines10050324
  • Figueiredo, J., Felix, P., Santos, C. P., & Moreno, J. C. (2017, July 17–20). Towards human-knee orthosis interaction based on adaptive impedance control through stiffness adjustment. In Proceedings of the International Conference on Rehabilitation Robotics (pp. 406–411). IEEE. https://doi.org/10.1109/ICORR.2017.8009281
  • Firescu, V., Gaşpar, M. L., Crucianu, I., & Rotariu, E. (2022). Collaboration between humans and robots in organizations: A macroergonomic, emotional, and spiritual approach. Frontiers in Psychology, 13, 855768. https://doi.org/10.3389/fpsyg.2022.855768
  • Fischinger, D., Einramhof, P., Papoutsakis, K., Wohlkinger, W., Mayer, P., Panek, P., Hofmann, S., Koertner, T., Weiss, A., Argyros, A., & Vincze, M. (2016). Hobbit, a care robot supporting independent living at home: First prototype and lessons learned. Robotics and Autonomous Systems, 75, 60–78. https://doi.org/10.1016/j.robot.2014.09.029
  • Fujita, M. (2001). AIBO: Toward the era of digital creatures. The International Journal of Robotics Research, 20(10), 781–794. https://doi.org/10.1177/02783640122068092
  • Gadde, P., Kharrazi, H., Patel, H., & MacDorman, K. F. (2011). Toward monitoring and increasing exercise adherence in older adults by robotic intervention: A proof of concept study. Journal of Robotics, 2011, 1–11. https://doi.org/10.1155/2011/438514
  • Gamborino, E., Yueh, H. P., Lin, W., Yeh, S. L., & Fu, L. C. (2019). Mood estimation as a social profile predictor in an autonomous, multi-session, emotional support robot for children. In 28th IEEE International Conference on Robot and Human Interactive Communication (RO-MAN) (pp. 1–6). IEEE.
  • Gerłowska, J., Skrobas, U., Grabowska-Aleksandrowicz, K., Korchut, A., Szklener, S., Szczęśniak-Stańczyk, D., Tzovaras, D., & Rejdak, K. (2018). Assessment of perceived attractiveness, usability, and societal impact of a multimodal robotic assistant for aging patients with memory impairments. Frontiers in Neurology, 9, 392. https://doi.org/10.3389/fneur.2018.00392
  • Ghafurian, M., Hoey, J., & Dautenhahn, K. (2021). Social robots for the care of persons with dementia: A systematic review. ACM Transactions on Human-Robot Interaction, 10(4), 1–31. https://doi.org/10.1145/3469653
  • Gombolay, M., Yang, X. J., Hayes, B., Seo, N., Liu, Z., Wadhwania, S., Yu, T., Shah, N., Golen, T., & Shah, J. (2018). Robotic assistance in the coordination of patient care. The International Journal of Robotics Research, 37(10), 1300–1316. https://doi.org/10.1177/0278364918778344
  • Goodrich, M. A., & Schultz, A. C. (2007). Human–robot interaction: A survey. Foundations and Trends® in Human-Computer Interaction, 1(3), 203–275. https://doi.org/10.1561/1100000005
  • Gonzalez, A., Garcia, L., Kilby, J., & McNair, P. (2021). Robotic devices for paediatric rehabilitation: A review of design features. Biomedical Engineering Online, 20(1), 89. https://doi.org/10.1186/s12938-021-00920-5
  • Gordleeva, S. Y., Lobov, S. A., Grigorev, N. A., Savosenkov, A. O., Shamshin, M. O., Lukoyanov, M. V., Khoruzhko, M. A., & Kazantsev, V. B. (2020). Real-time EEG-EMG human-machine interface-based control system for a lower-limb exoskeleton. IEEE Access. 8, 84070–84081. https://doi.org/10.1109/ACCESS.2020.2991812
  • Görer, B., Salah, A. A., & Akın, H. L. (2017). An autonomous robotic exercise tutor for elderly people. Autonomous Robots, 41(3), 657–678. https://doi.org/10.1007/s10514-016-9598-5
  • Granata, C., Pino, M., Legouverneur, G., Vidal, J. S., Bidaud, P., & Rigaud, A. S. (2013). Robot services for elderly with cognitive impairment: Testing usability of graphical user interfaces. Technology and Health Care: official Journal of the European Society for Engineering and Medicine, 21(3), 217–231. https://doi.org/10.3233/THC-130718
  • Graves, R. H. (2013). The triumph of an idea. The story of Henry Ford. Edizioni Savine.
  • Greczek, J., & Mataric, M. (2015). Toward personalized pain anxiety reduction for children. AAAI Fall Symposium - Technical Report, FS-15-01, 74–76.
  • Han, J. I., Lee, J. H., Choi, H. S., Kim, J. H., & Choi, J. (2022). Policy design for an ankle-foot orthosis using simulated physical human–robot interaction via deep reinforcement learning. IEEE Transactions on Neural Systems and Rehabilitation Engineering: A Publication of the IEEE Engineering in Medicine and Biology Society, 30, 2186–2197. https://doi.org/10.1109/TNSRE.2022.3196468
  • Han, D., Mulyana, B., Stankovic, V., & Cheng, S. (2023). A survey on deep reinforcement learning algorithms for robotic manipulation. Sensors, 23(7), 3762. https://doi.org/10.3390/s23073762
  • Hanson Robotics (2021). Meet Grace, the health care robot COVID-19 created. https://nypost.com/2021/06/09/meet-grace-the-healthcare-robot-covid-19-created/
  • Helm, M., Carros, F., Schädler, J., & Wulf, V. (2022). Zoomorphic robots and people with disabilities. In Proceedings of Mensch und Computer (pp. 431–436). Association for Computing Machinery. https://doi.org/10.1145/3543758.3547552
  • Henkemans, O. A. B., Bierman, B. P. B., Janssen, J., Looije, R., Neerincx, M. A., van Dooren, M. M. M., de Vries, J. L. E., van der Burg, G. J., & Huisman, S. D. (2017). Design and evaluation of a personal robot playing a self-management education game with children with diabetes type 1. International Journal of Human-Computer Studies, 106, 63–76. https://doi.org/10.1016/j.ijhcs.2017.06.001
  • Hillis, D., McCarthy, J., Mitchell, T. M., Mueller, E. T., Riecken, D., Sloman, A., & Winston, P. H. (2007). In honor of Marvin Minsky’s contributions on his 80th birthday. AI Magazine, 28(4), 103–110. https://doi.org/10.1609/aimag.v28i4.2064
  • Housman, S. J., Le, V., Rahman, T., Sanchez, R. J., & Remkensrneyer, D. J. (2007). Arm-training with T-WREX after chronic stroke: Preliminary results of a randomized controlled trial. In IEEE 10th International Conference on Rehabilitation Robotics (pp. 562–568). IEEE.
  • Irfan, B., Ramachandran, A., Spaulding, S., Glas, D. F., Leite, I., & Koay, K. L. (2019). Personalization in long-term human-robot interaction. In 14th ACM/IEEE International Conference on Human-Robot Interaction (HRI) (pp. 685–686). IEEE.
  • Iwata, H., & Sugano, S. (2009). Design of human symbiotic robot TWENDY-ONE. In IEEE International Conference on Robotics and Automation (pp. 580–586). IEEE.
  • Jamwal, P. K., Hussain, S., Ghayesh, M. H., & Rogozina, S. V. (2016). Impedance control of an intrinsically compliant parallel ankle rehabilitation robot. IEEE Transactions on Industrial Electronics, 63(6), 3638–3647. https://doi.org/10.1109/TIE.2016.2521600
  • Jeong, S., Logan, D. E., Goodwin, M. S., Graca, S., O’Connell, B., Goodenough, H., Anderson, L., Stenquist, N., Fitzpatrick, K., Zisook, M., Plummer, L., Breazeal, C., & Weinstock, P. (2015). A social robot to mitigate stress, anxiety, and pain in hospital pediatric care. In 10th Annual ACM/IEEE International Conference on Human-Robot Interaction Extended Abstracts (pp. 103–104). ACM. https://doi.org/10.1145/2701973.2702028
  • Jibb, L. A., Birnie, K. A., Nathan, P. C., Beran, T. N., Hum, V., Victor, J. C., & Stinson, J. N. (2018). Using the MEDiPORT humanoid robot to reduce procedural pain and distress in children with cancer: A pilot randomized controlled trial. Pediatric Blood & Cancer, 65(9), e27242. https://doi.org/10.1002/pbc.27242
  • Kachouie, R., Sedighadeli, S., Khosla, R., & Chu, M. T. (2014). Socially assistive robots in elderly care: A mixed-method systematic literature review. International Journal of Human-Computer Interaction, 30(5), 369–393. https://doi.org/10.1080/10447318.2013.873278
  • Kahn, L. E., Zygman, M. L., Rymer, W. Z., & Reinkensmeyer, D. J. (2006). Robot-assisted reaching exercise promotes arm movement recovery in chronic hemiparetic stroke: A randomized controlled pilot study. Journal of Neuroengineering and Rehabilitation, 3(1), 12. https://doi.org/10.1186/1743-0003-3-12
  • Kanal, V., Brady, J., Nambiappan, H., Kyrarini, M., Wylie, G., & Makedon, F. (2020). Towards a serious game based human-robot framework for fatigue assessment. In Conference on PErvasive Technologies Related to Assistive Environments, 13th ACM International. ACM. https://doi.org/10.1145/3389189.3398744
  • Kang, K., II, Freedman, S., Matarić, M. J., Cunningham, M. J., & Lopez, B. (2005). A hands-off physical therapy assistance robot for cardiac patients. In IEEE 9th International Conference on Rehabilitation Robotics (pp. 337–340). IEEE.
  • Khan, M. N., Altalbe, A., Naseer, F., & Awais, Q. (2024). Telehealth-Enabled In-Home Elbow Rehabilitation for Brachial Plexus Injuries Using Deep-Reinforcement-Learning-Assisted Telepresence Robots. Sensors, 24(4), 1273. https://doi.org/10.3390/s24041273
  • Kiguchi, K., & Hayashi, Y. (2012). An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B: Cybernetics, 42(4), 1064–1071. https://doi.org/10.1109/TSMCB.2012.2185843
  • Kim, S. (2022). Working with robots: Human resource development considerations in human–robot interaction. Human Resource Development Review, 21(1), 48–74. https://doi.org/10.1177/15344843211068810
  • King, C. H., Chen, T. L., Jain, A., & Kemp, C. C. (2010). Towards an assistive robot that autonomously performs bed baths for patient hygiene. In IEEE/RSJ International Conference on Intelligent Robots and Systems- Conference Proceedings (pp. 319–324). IEEE.
  • Kitchenham, B., Pretorius, R., Budgen, D., Brereton, O. P., Turner, M., Niazi, M., & Linkman, S. (2010). Systematic literature reviews in software engineering-A tertiary study. Information and Software Technology, 52(8), 792–805. https://doi.org/10.1016/j.infsof.2010.03.006
  • Klamroth-Marganska, V., Blanco, J., Campen, K., Curt, A., Dietz, V., Ettlin, T., Felder, M., Fellinghauer, B., Guidali, M., Kollmar, A., Luft, A., Nef, T., Schuster-Amft, C., Stahel, W., & Riener, R. (2014). Three-dimensional, task-specific robot therapy of the arm after stroke: A multicentre, parallel-group randomised trial. The Lancet Neurology, 13(2), 159–166. https://doi.org/10.1016/S1474-4422(13)70305-3
  • Krebs, H. I., Ferraro, M., Buerger, S. P., Newbery, M. J., Makiyama, A., Sandmann, M., Lynch, D., Volpe, B. T., & Hogan, N. (2004). Rehabilitation robotics: Pilot trial of a spatial extension for MIT-Manus. Journal of NeuroEngineering and Rehabilitation, 1(1), 5. https://doi.org/10.1186/1743-0003-1-5
  • Kulpa, E., Rahman, A. T., & Vahia, I. V. (2021). Approaches to assessing the impact of robotics in geriatric mental health care: A scoping review. International Review of Psychiatry, 33(4), 424–434. https://doi.org/10.1080/09540261.2020.1839391
  • Levac, D., Colquhoun, H., & O'Brien, K. K. (2010). Scoping studies: Advancing the methodology. Implementation Science: IS, 5(1), 69. https://doi.org/10.1186/1748-5908-5-69
  • Li, S., Huang, S., Huang, L., Shen, H., Liu, Y., & Xie, L. (2023). Design and optimization of a body weight support system for lower-limb rehabilitation robots considering vibration characteristics. Structural and Multidisciplinary Optimization, 66(12), 1–21. https://doi.org/10.1007/s00158-023-03700-y
  • Li, X., Yang, Q., & Song, R. (2021). Performance-based hybrid control of a cable-driven upper-limb rehabilitation robot. IEEE Transactions on Biomedical Engineering, 68(4), 1351–1359. https://doi.org/10.1109/TBME.2020.3027823
  • Li, Z., Huang, Z., He, W., & Su, C. Y. (2017). Adaptive impedance control for an upper limb robotic exoskeleton using biological signals. IEEE Transactions on Industrial Electronics, 64(2), 1664–1674. https://doi.org/10.1109/TIE.2016.2538741
  • Littler, B. K. M., Alessa, T., Dimitri, P., Smith, C., & de Witte, L. (2021). Reducing negative emotions in children using social robots: Systematic review. Archives of Disease in Childhood, 106(11), 1095–1101. https://doi.org/10.1136/archdischild-2020-320721
  • Looije, R., Neerincx, M. A., & Cnossen, F. (2010). Persuasive robotic assistant for health self-management of older adults: Design and evaluation of social behaviors. International Journal of Human-Computer Studies, 68(6), 386–397. https://doi.org/10.1016/j.ijhcs.2009.08.007
  • Looije, R., Neerincx, M. A., Peters, J. K., & Henkemans, O. A. B. (2016). Integrating robot support functions into varied activities at returning hospital visits: Supporting child’s self-management of diabetes. International Journal of Social Robotics, 8(4), 483–497. https://doi.org/10.1007/s12369-016-0365-8
  • Lu, S. C., Blackwell, N., & Do, E. Y. L. (2011). mediRobbi: An interactive companion for pediatric patients during hospital visit. Lecture Notes in Computer Science, 6762(2), 547–556. https://doi.org/10.1007/978-3-642-21605-3_60
  • Lum, P. S., Lehman, S. L., & Reinkensmeyer, D. J. (1995). The bimanual lifting rehabilitator: An adaptive machine for therapy of stroke patients. IEEE Transactions on Rehabilitation Engineering, 3(2), 166–174. https://doi.org/10.1109/86.392371
  • Luperto, M., Monroy, J., Renoux, J., Lunardini, F., Basilico, N., Bulgheroni, M., Cangelosi, A., Cesari, M., Cid, M., Ianes, A., Gonzalez-Jimenez, J., Kounoudes, A., Mari, D., Prisacariu, V., Savanovic, A., Ferrante, S., & Borghese, N. A. (2022). Integrating social assistive robots, IoT, virtual communities and smart objects to assist at-home independently living elders: The MoveCare project. International Journal of Social Robotics, 15(3), 517–545. https://doi.org/10.1007/s12369-021-00843-0
  • Mamun, K., Islam, F. M., Sharma, A., Hoque, A. S. M., & Szecsi, T. (2016). Patient condition monitoring modular hospital robot. Journal of Software, 11(8), 768–786. https://doi.org/10.17706/jsw.11.8.768-786
  • Martinez-Martin, E., Costa, A., & Cazorla, M. (2019). PHAROS 2.0—A PHysical Assistant RObot System improved. Sensors, 19, 4531. https://doi.org/10.3390/s19204531
  • McColl, D., & Nejat, G. (2013). Meal-time with a socially assistive robot and older adults at a long-term care facility. Journal of Human-Robot Interaction, 2(1), 152–171. https://doi.org/10.5898/JHRI.2.1.McColl
  • Miyake, T., Wang, Y., Yan, G., & Sugano, S. (2022). Skeleton recognition-based motion generation and user emotion evaluation with in-home rehabilitation assistive humanoid robot. In IEEE-RAS 21st International Conference on Humanoid Robots (Humanoids) (pp. 616–621). IEEE.
  • Miyoshi, T., Hiramatsu, K., Yamamoto, S. I., Nakazawa, K., & Akai, M. (2008). Robotic gait trainer in water: Development of an underwater gait-training orthosis. Disability and Rehabilitation, 30(2), 81–87. https://doi.org/10.1080/09638280701191826
  • Moran, M. E. (2007). Evolution of robotic arms. Journal of Robotic Surgery, 1(2), 103–111. https://doi.org/10.1007/s11701-006-0002-x
  • Mordoch, E., Osterreicher, A., Guse, L., Roger, K., & Thompson, G. (2013). Use of social commitment robots in the care of elderly people with dementia: A literature review. Maturitas, 74(1), 14–20. https://doi.org/10.1016/j.maturitas.2012.10.015
  • Muggleton, S. (2014). Alan Turing and the development of Artificial Intelligence. AI Communications, 27(1), 3–10. https://doi.org/10.3233/AIC-130579
  • Mukai, T., Hirano, S., Nakashima, H., Kato, Y., Sakaida, Y., Guo, S., & Hosoe, S. (2010). Development of a nursing-care assistant robot RIBA that can lift a human in its arms. In IEEE/RSJ International Conference on Intelligent Robots and Systems, 5996–6001. IEEE.
  • Naganuma, M., Tetsui, T., Ohkubo, E., Kimura, R., & Kato, N. (2008). Trial of robot assisted rehabilitation using robotic pet. Gerontechnology, 7(2), 169–170. https://doi.org/10.4017/gt.2008.07.02.106.00
  • Narayan, J., Kalita, B., & Dwivedy, S. K. (2021). Development of robot-based upper limb devices for rehabilitation purposes: A systematic review. Augmented Human Research, 6(1), 1–33. https://doi.org/10.1007/s41133-020-00043-x
  • Narayanan, K. L., Krishnan, R. S., Son, L. H., Tung, N. T., Julie, E. G., Robinson, Y. H., & Gerogiannis, V. C. (2022). Fuzzy guided autonomous nursing robot through wireless beacon network. Multimedia Tools and Applications, 81(3), 3297–3325. https://doi.org/10.1007/s11042-021-11264-6
  • Naseer, F., Khan, M. N., Nawaz, Z., & Awais, Q. (2023). Telepresence robots and controlling techniques in healthcare system. Computers, Materials & Continua, 74(3), 6623–6639. https://doi.org/10.32604/cmc.2023.035218
  • Naseer, F., Khan, M. N., & Altalbe, A. (2023). Telepresence robot with DRL assisted delay compensation in IoT-enabled sustainable healthcare environment. Sustainability, 15(4), 3585. https://doi.org/10.3390/su15043585
  • Neerincx, A., Leven, J., Wolfert, P., & de Graaf, M. M. (2023). The effect of simple emotional gesturing in a socially assistive robot on child’s engagement at a group vaccination day. In ACM/IEEE International Conference on Human-Robot Interaction (pp. 162–171). ACM.
  • Nef, T., Riener, R. (2005). ARMin - Design of a novel arm rehabilitation robot. In IEEE 9th International Conference on Rehabilitation Robotics (pp. 57–60). IEEE.
  • Newton, D. E. (2018). Robots. Bloomsbury Publishing.
  • Nieto Agraz, C., Pfingsthorn, M., Gliesche, P., Eichelberg, M., & Hein, A. (2022). A survey of robotic systems for nursing care. Frontiers in Robotics and AI, 9, 832248. https://doi.org/10.3389/frobt.2022.832248
  • Nishat, F., Hudson, S., Panesar, P., Ali, S., Litwin, S., Zeller, F., Candelaria, P., Foster, M. E., & Stinson, J. (2023). Exploring the needs of children and caregivers to inform design of an artificial intelligence-enhanced social robot in the pediatric emergency department. Journal of Clinical and Translational Science, 7(1), e191. https://doi.org/10.1017/cts.2023.608
  • Nonami, K., Barai, R. K., Irawan, A., & Daud, M. R. (2014). Hydraulically actuated hexapod robots. Springer Japan.
  • Ohneberg, C., Stöbich, N., Warmbein, A., Rathgeber, I., Mehler-Klamt, A. C., Fischer, U., & Eberl, I. (2023). Assistive robotic systems in nursing care: A scoping review. BMC Nursing, 22(1), 72. https://doi.org/10.1186/s12912-023-01230-y
  • Okita, S. Y. (2013). Self-other’s perspective taking: The use of therapeutic robot companions as social agents for reducing pain and anxiety in pediatric patients. Cyberpsychology, Behavior, and Social Networking, 16(6), 436–441. https://doi.org/10.1089/cyber.2012.0513
  • Onishi, M., Luo, Z. W., Odashima, T., Hirano, S., Tahara, K., & Mukai, T. (2007). Generation of human care behaviors by human-interactive robot RI-MAN. In IEEE International Conference on Robotics and Automation (pp. 3128–3129). IEEE.
  • Otten, A., Voort, C., Stienen, A., Aarts, R., Van Asseldonk, E., & Van Der Kooij, H. (2015). LIMPACT: A hydraulically powered self-aligning upper limb exoskeleton. IEEE/ASME Transactions on Mechatronics, 20(5), 2285–2298. https://doi.org/10.1109/TMECH.2014.2375272
  • Park, K. H., Lee, H. E., Kim, Y., & Bien, Z. Z. (2008). A steward robot for human-friendly human-machine interaction in a smart house environment. IEEE Transactions on Automation Science and Engineering, 5(1), 21–25. https://doi.org/10.1109/TASE.2007.911674
  • Pasek, A. (2014). Renaissance robotics: Leonardo da Vinci’s Lost Knight and Enlivened Materiality. Shift: Graduate Journal of Visual and Material Culture, (7), 1–25. http://dx.doi.org/10.17613/pj7wzk87
  • Perry, J. C., & Rosen, J. (2006). Design of a 7 degree-of-freedom upper-limb powered exoskeleton. In 1st IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics (pp. 805–810). IEEE.
  • Piccinini, G. (2004). The first computational theory of mind and brain: A close look at Mcculloch and Pitts’s “logical calculus of ideas immanent in nervous activity”. Synthese, 141(2), 175–215. https://doi.org/10.1023/B:SYNT.0000043018.52445.3e
  • Pineau, J., Montemerlo, M., Pollack, M., Roy, N., & Thrun, S. (2003). Towards robotic assistants in nursing homes: Challenges and results. Robotics and Autonomous Systems, 42(3-4), 271–281. https://doi.org/10.1016/S0921-8890(02)00381-0
  • Rajaraman, V. (2014). JohnMcCarthy—father of artificial intelligence. Resonance, 19(3), 198–207. https://doi.org/10.1007/s12045-014-0027-9
  • Ren, Y., Park, H. S., & Zhang, L. Q. (2009). Developing a whole-arm exoskeleton robot with hand opening and closing mechanism for upper limb stroke rehabilitation. In IEEE International Conference on Rehabilitation Robotics (pp. 761–765). IEEE.
  • Retto, J. (2017). Sophia, first citizen robot of the world. ResearchGate. https://www.researchgate.net
  • Romdhane, L., & Zeghloul, S. (2009). AL-JAZARI (1136–1206). In Distinguished figures in mechanism and machine science: Their contributions and legacies, Part 2 (pp. 1–21). Springer Netherlands.
  • Rossi, S., Larafa, M., & Ruocco, M. (2020). Emotional and behavioural distraction by a social robot for children anxiety reduction during vaccination. International Journal of Social Robotics, 12(3), 765–777. https://doi.org/10.1007/s12369-019-00616-w
  • Ryan, H., & Tsuda, S. (2015). History of and current systems in robotic surgery. Essentials of Robotic Surgery, 1, 1–12. https://doi.org/10.1007/978-3-319-09564-6_1
  • Sahoo, S. K., & Choudhury, B. B. (2023). Evaluating material alternatives for low cost robotic wheelchair chassis: A combined CRITIC, EDAS, and COPRAS framework. Jordan Journal of Mechanical & Industrial Engineering, 17(4), 653–669. https://doi.org/10.59038/jjmie/170419.
  • Sato, M., Yasuhara, Y., Osaka, K., Ito, H., Dino, M. J. S., Ong, I. L., Zhao, Y., & Tanioka, T. (2020). Rehabilitation care with Pepper humanoid robot: A qualitative case study of older patients with schizophrenia and/or dementia in Japan. Enfermería Clínica, 30(1), 32–36. https://doi.org/10.1016/j.enfcli.2019.09.021
  • Schabowsky, C. N., Godfrey, S. B., Holley, R. J., & Lum, P. S. (2010). Development and pilot testing of HEXORR: Hand exoskeleton rehabilitation robot. Journal of Neuroengineering and Rehabilitation, 7(1), 36. https://doi.org/10.1186/1743-0003-7-36
  • Sifeng, Z., Min, T., Zehao, Z., & Zhao, Y. (2016). Capturing the opportunity in developing intelligent elderly care robots in China challenges, opportunities and development strategy. In IEEE Workshop on Advanced Robotics and its Social Impacts (pp. 61–66). IEEE.
  • Shaik, T., Tao, X., Xie, H., Li, L., Yong, J., & Dai, H. N. (2023). AI-driven patient monitoring with multi-agent deep reinforcement learning. arXiv preprint arXiv:2309.10980. https://doi.org/10.48550/arXiv.2309.10980
  • Sharkey, N., & Sharkey, A. (2008). Electro-mechanical robots before the computer. Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 223(1), 235–241. https://doi.org/10.1243/09544062JMES1262
  • Shenoy, S., Hou, Y., Wang, X., Nikseresht, F., & Doryab, A. (2021). Adaptive humanoid robots for pain management in children. In Companion of the ACM/IEEE International Conference on Human-Robot Interaction (pp. 510–514). ACM. https://doi.org/10.1145/3434074.3447224
  • Shibata, T., Wada, K., Ikeda, Y., & Sabanovic, S. (2009). Cross-cultural studies on subjective evaluation of a seal robot. Advanced Robotics, 23(4), 443–458. https://doi.org/10.1163/156855309X408826
  • Shibata, T., & Wada, K. (2011). Robot therapy: A new approach for mental healthcare of the elderly–a mini-review. Gerontology, 57(4), 378–386. https://doi.org/10.1159/000319015
  • Shigemi, S. (2018). ASIMO and humanoid robot research at Honda. Humanoid Robotics: A Reference, 55–90. https://doi.org/10.1007/978-94-007-6046-2_9
  • Smakman, M. H. J., Smit, K., Buser, L., Monshouwer, T., van Putten, N., Trip, T., Schoof, C., Preciado, D. F., Konijn, E. A., van der Roest, E. M., & Tiel Groenestege, W. M. (2021). Mitigating children’s pain and anxiety during blood draw using social robots. Electronics, 10(10), 1211. https://doi.org/10.3390/electronics10101211
  • Song, A., Pan, L., Xu, G., & Li, H. (2015). Adaptive motion control of arm rehabilitation robot based on impedance identification. Robotica, 33(9), 1795–1812. https://doi.org/10.1017/S026357471400099X
  • Qassim, H. M., & Wan Hasan, W. Z. (2020). A review on upper limb rehabilitation robots. Applied Sciences, 10(19), 6976. https://doi.org/10.3390/app10196976
  • Tamantini, C., Cordella, F., Lauretti, C., Luzio, F. S. D., Campagnola, B., Cricenti, L., Bravi, M., Bressi, F., Draicchio, F., Sterzi, S., & Zollo, L. (2023). Tailoring upper-limb robot-aided orthopedic rehabilitation on patients’ psychophysiological state. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 31, 3297–3306. https://doi.org/10.1109/TNSRE.2023.3298381
  • Tamura, T., Yonemitsu, S., Itoh, A., Oikawa, D., Kawakami, A., Higashi, Y., Fujimooto, T., & Nakajima, K. (2004). Is an entertainment robot useful in the care of elderly people with severe dementia? The Journals of Gerontology. Series A, Biological Sciences and Medical Sciences, 59(1), 83–85. https://doi.org/10.1093/gerona/59.1.m83
  • Tapus, A., Ţăpuş, C., & Matarić, M. J. (2008). User-robot personality matching and assistive robot behavior adaptation for post-stroke rehabilitation therapy. Intelligent Service Robotics, 1(2), 169–183. https://doi.org/10.1007/s11370-008-0017-4
  • Tanaka, K., Hayakawa, M., Noda, C., Nakamura, A., & Akiyama, C. (2022). Effects of artificial intelligence aibo intervention on alleviating distress and fear in children. Child and Adolescent Psychiatry and Mental Health, 16(1), 87. https://doi.org/10.1186/s13034-022-00519-1
  • Tiberio, L., Cesta, A., Cortellessa, G., Padua, L., & Pellegrino, A. R. (2012). Assessing affective response of older users to a telepresence robot using a combination of psychophysiological measures. In IEEE International Workshop on Robot and Human Interactive Communication (pp. 833–838). IEEE.
  • Triantafyllidis, A., Alexiadis, A., Votis, K., & Tzovaras, D. (2023). Social robot interventions for child healthcare: A systematic review of the literature. Computer Methods and Programs in Biomedicine Update, 3(1), 100–108. https://doi.org/10.1016/j.cmpbup.2023.100108
  • Trost, M. J., Chrysilla, G., Gold, J. I., & Matarić, M. (2020). Socially-Assistive robots using empathy to reduce pain and distress during peripheral IV placement in children. Pain Research & Management, 2020, 7935215–7935217. https://doi.org/10.1155/2020/7935215
  • Tsoi, Y. H., Xie, S. Q., & Graham, A. E. (2009). Design, modeling and control of an ankle rehabilitation robot. Studies in Computational Intelligence, 177, 377–399. https://doi.org/10.1007/978-3-540-89933-4_18
  • Van Lam, P., & Fujimoto, Y. (2019). A robotic cane for balance maintenance assistance. IEEE Transactions on Industrial Informatics, 15(7), 3998–4009. https://doi.org/10.1109/TII.2019.2903893
  • Van Bindsbergen, K. L., van Gorp, M., Thomassen, B. W., Merks, J. H., & Grootenhuis, M. A. (2022). Social robots in pediatric oncology: Opinions of health care providers. Journal of Psychosocial Oncology Research & Practice, 4(2), e073. https://doi.org/10.1097/OR9.0000000000000073
  • Vélez-Guerrero, M. A., Callejas-Cuervo, M., & Mazzoleni, S. (2021). Design, development, and testing of an intelligent wearable robotic exoskeleton prototype for upper limb rehabilitation. Sensors, 21(16), 5411. https://doi.org/10.3390/s21165411
  • Veneman, J. F., Kruidhof, R., Hekman, E. E. G., Ekkelenkamp, R., Van Asseldonk, E. H. F., & Van Der Kooij, H. (2007). Design and evaluation of the LOPES exoskeleton robot for interactive gait rehabilitation. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society, 15(3), 379–386. https://doi.org/10.1109/tnsre.2007.903919
  • Wang, S., Wang, L., Meijneke, C., Van Asseldonk, E., Hoellinger, T., Cheron, G., Ivanenko, Y., La Scaleia, V., Sylos-Labini, F., Molinari, M., Tamburella, F., Pisotta, I., Thorsteinsson, F., Ilzkovitz, M., Gancet, J., Nevatia, Y., Hauffe, R., Zanow, F., & Van Der Kooij, H. (2015). Design and control of the MINDWALKER exoskeleton. IEEE Transactions on Neural Systems and Rehabilitation Engineering: a Publication of the IEEE Engineering in Medicine and Biology Society, 23(2), 277–286. https://doi.org/10.1109/TNSRE.2014.2365697
  • Wu, Y.-H., Wrobel, J., Cornuet, M., Kerhervé, H., Damnée, S., & Rigaud, A.-S. (2014). Acceptance of an assistive robot in older adults: A mixed-method study of human-robot interaction over a 1-month period in the living lab setting. Clinical Interventions in Aging, 9, 801–811. https://doi.org/10.2147/CIA.S56435
  • Wullenkord, R., & Eyssel, F. (2020). Societal and ethical issues in HRI. Current Robotics Reports, 1(3), 85–96. https://doi.org/10.1007/s43154-020-00010-9
  • Xu, W., Huang, J., & Cheng, L. (2018). A novel coordinated motion fusion-based walking-aid robot system. Sensors, 18(9), 2761. https://doi.org/10.3390/s18092761
  • Yang, C. Y., Lu, M. J., Tseng, S. H., & Fu, L. C. (2017). A companion robot for daily care of elders based on homeostasis. In 56th Annual Conference of the Society of Instrument and Control Engineers of Japan (SICE) (pp. 1401–1406). IEEE.
  • Yeh, T. J., Wu, M. J., Lu, T. J., Wu, F. K., & Huang, C. R. (2010). Control of McKibben pneumatic muscles for a power-assist, lower-limb orthosis. Mechatronics, 20(6), 686–697. https://doi.org/10.1016/j.mechatronics.2010.07.004
  • Yun, Y., Dancausse, S., Esmatloo, P., Serrato, A., Merring, C. A., Agarwal, P., Deshpande, & A. D. (2017). Maestro: An EMG-driven assistive hand exoskeleton for spinal cord injury patients. In IEEE International Conference on Robotics and Automation (pp. 2904–2910). IEEE.
  • Zhang, H., Austin, H., Buchanan, S., Herman, R., Koeneman, J., & He, J. (2011). Feasibility studies of robot-assisted stroke rehabilitation at clinic and home settings using RUPERT. In IEEE International Conference on Rehabilitation Robotics. IEEE.
  • Zhang, F., & Demiris, Y. (2023). Visual-tactile learning of garment unfolding for robot-assisted dressing. IEEE Robotics and Automation Letters, 8(9), 5512–5519. https://doi.org/10.1109/LRA.2023.3296371
  • Zhou, J., Yang, S., & Xue, Q. (2021). Lower limb rehabilitation exoskeleton robot: A review. Advances in Mechanical Engineering, 13(4), 168781402110118. https://doi.org/10.1177/16878140211011862

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.