32
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Toward Immersive and Interactive Surgical Training Using Extended Reality Simulator for IoMT

ORCID Icon, , , , &
Received 20 Sep 2023, Accepted 08 May 2024, Published online: 27 May 2024

References

  • Butaslac, I. I. M., Fujimoto, Y., Sawabe, T., Kanbara, M., & Kato, H. (2023). Systematic review of augmented reality training systems. IEEE Transactions on Visualization and Computer Graphics, 29(12), 5062–5082. https://doi.org/10.1109/TVCG.2022.3201120
  • Fortmeier, D., Mastmeyer, A., Schroder, J., & Handels, H. (2016). A virtual reality system for PTCD simulation using direct visuo-haptic rendering of partially segmented image data. IEEE Journal of Biomedical and Health Informatics, 20(1), 355–366. https://doi.org/10.1109/JBHI.2014.2381772
  • Frederiksen, J. G., Sørensen, S. M. D., Konge, L., Svendsen, M. B. S., Nobel-Jørgensen, M., Bjerrum, F., & Andersen, S. A. W. (2020). Cognitive load and performance in immersive virtual reality versus conventional virtual reality simulation training of laparoscopic surgery: A randomized trial[J]. Surgical Endoscopy, 34(3), 1244–1252. https://doi.org/10.1007/s00464-019-06887-8
  • Fried, G. M. (2008). FLS assessment of competency using simulated laparoscopic tasks. Journal of Gastrointestinal Surgery: official Journal of the Society for Surgery of the Alimentary Tract, 12(2), 210–212. https://doi.org/10.1007/s11605-007-0355-0
  • Gossot, D., Lutz, J., Grigoroiu, M., Brian, E., & Seguin-Givelet, A. (2016). Thoracoscopic anatomic segmentectomies for lung cancer: Technical aspects. Journal of Visualized Surgery, 2(10). https://doi.org/10.21037/jovs.2016.10.04
  • Hanna, J. M., Berry, M. F., & D’Amico, T. A. (2013). Contraindications of video-assisted thoracoscopic surgical lobectomy and determinants of conversion to open. Journal of Thoracic Disease, 5(3), S182–189. https://doi.org/10.3978/j.issn.2072-1439.2013.07.08
  • Hansen, H. J., & Petersen, R. H. (2012). Video-assisted thoracoscopic lobectomy using a standardized three-port anterior approach - The Copenhagen experience. Annals of Cardiothoracic Surgery, 1(1), 70–706. https://doi.org/10.3978/j.issn.2225-319X.2012.04.15
  • Heng, P. A., Cheng, C. Y., Wong, T. T., Xu, Y., Chui, Y. P., Chan, K. M., & Tso, S. K. (2004). A virtual-reality training system for knee arthroscopic surgery. IEEE Transactions on Information Technology in Biomedicine, 8(2), 217–227. https://doi.org/10.1109/TITB.2004.826720
  • Hoover, M., & Winer, E. (2021). Designing adaptive extended reality training systems based on expert instructor behaviors. IEEE Access, 9(2021), 138160–138173. https://doi.org/10.1109/ACCESS.2021.3118105
  • Jensen, K., Bjerrum, F., Hansen, H. J., Petersen, R. H., Pedersen, J. H., & Konge, L. (2015). A new possibility in thoracoscopic virtual reality simulation training: Development and testing of a novel virtual reality simulator for video-assisted thoracoscopic surgery lobectomy. Interactive Cardiovascular and Thoracic Surgery, 21(4), 420–426. https://doi.org/10.1093/icvts/ivv183
  • Jensen, K., Ringsted, C., Hansen, H. J., Petersen, R. H., & Konge, L. (2014). Simulation-based training for thoracoscopic lobectomy: A randomized controlled trial: Virtual-reality versus black-box simulation. Surgical Endoscopy, 28(6), 1821–1829. https://doi.org/10.1007/s00464-013-3392-7
  • Jiang, B., Yang, J., Lv, Z., & Song, H. (2019). Wearable vision assistance system based on binocular sensors for visually impaired users. IEEE Internet of Things Journal, 6(2), 1375–1383. https://doi.org/10.1109/JIOT.2018.2842229
  • Korzeniowski, P. (2007). Validation of NOVISE-a novel natural orifice virtual surgery simulator. https://doi.org/10.1177/1553350616669896
  • Kotloff, R. M., Tino, G., Bavaria, J. E., Palevsky, H. I., Hansen-Flaschen, J., Wahl, P. M., & Kaiser, L. R. (1996). Bilateral lung volume reduction surgery for advanced emphysema: A comparison of median sternotomy and thoracoscopic approaches. Chest, 110(6), 1399–1406. https://doi.org/10.1016/s1053-0770(97)90038-0
  • Kruglikova, I., Grantcharov, T. P., Drewes, A. M., & Funch-Jensen, P. (2010). The impact of constructive feedback on training in gastrointestinal endoscopy using high-fidelity virtual-reality simulation: A randomised controlled trial. Gut, 59(2), 181–185. https://doi.org/10.1136/gut.2009.191825
  • Larsen, C. R., Soerensen, J. L., Grantcharov, T. P., Dalsgaard, T., Schouenborg, L., Ottosen, C., Schroeder, T. V., & Ottesen, B. S. (2009). Effect of virtual reality training on laparoscopic surgery: Randomised controlled trial. BMJ, 338(2), b1802–b1802. https://doi.org/10.1136/bmj.b1802
  • Li, F., Tai, Y., Li, Q., Peng, J., Huang, X., Chen, Z., & Shi, J. (2019). Real-time needle force modeling for VR-based renal biopsy training with respiratory motion using direct clinical data. Applied Bionics and Biomechanics, 2019(2019), 9756842–9756814. https://doi.org/10.1155/2019/9756842
  • Liu, J., Qian, K., Qin, Z., Alshehri, M. D., Li, Q., & Tai, Y. (2023). Cloud computing-enabled IIOT system for neurosurgical simulation using augmented reality data access. Digital Communications and Networks, 9(2), 347–357. https://doi.org/10.1016/j.dcan.2022.04.019
  • Loukas, C. (2016). Surgical simulation training systems: Box trainers, virtual reality and augmented reality simulators. International Journal of Advanced Robotics and Automation, 1(2), 1–9. https://doi.org/10.15226/2473-3032/1/2/00109
  • Lv, Z., Chen, D., Lou, R., & Song, H. (2021). Industrial security solution for virtual reality. IEEE Internet of Things Journal, 8(8), 6273–6281. https://doi.org/10.1109/JIOT.2020.3004469
  • Lv, Z., Song, H., Basanta-Val, P., Steed, A., & Jo, M. (2017). Next-generation big data analytics: State of the art, challenges, and future research topics. IEEE Transactions on Industrial Informatics, 13(4), 1891–1899. https://doi.org/10.1109/TII.2017.2650204
  • Lv, Z., Yin, T., Zhang, X., Song, H., & Chen, G. (2016). Virtual reality smart city based on WebVRGIS. IEEE Internet of Things Journal, 3(6), 1015–1024. https://doi.org/10.1109/JIOT.2016.2546307
  • Nicolau, S., Garcia, A., Pennec, X., Soler, L., & Ayache, N. (2005). An augmented reality system to guide radio-frequency tumour ablation. Computer Animation and Virtual Worlds, 16(1), 1–10. https://doi.org/10.1002/cav.52
  • Nicolau, S., Soler, L., Mutter, D., & Marescaux, J. (2011). Augmented reality in laparoscopic surgical oncology. Surgical Oncology, 20(3), 189–201. https://doi.org/10.1016/j.suronc.2011.07.002
  • O’Sullivan, K. E., Kreaden, U. S., Hebert, A. E., Eaton, D., & Redmond, K. C. (2019). A systematic review of robotic versus open and video assisted thoracoscopic surgery (VATS) approaches for thymectomy. Annals of Cardiothoracic Surgery, 8(2), 174–193. https://doi.org/10.21037/acs.2019.02.04
  • Peters, J. H., Fried, G. M., Swanstrom, L. L., Soper, N. J., Sillin, L. F, Schirmer, B., Hoffman, K., & The SAGES FLS Committee. (2004). Development and validation of a comprehensive program of education and assessment of the basic fundamentals of laparoscopic surgery. Surgery, 135(1), 21–27. https://doi.org/10.1016/s0039-6060(03)00156-9
  • Ritter, E. M., Kindelan, T. W., Michael, C., Pimentel, E. A., & Bowyer, M. W. (2007). Concurrent validity of augmented reality metrics applied to the fundamentals of laparoscopic surgery (FLS). Surgical Endoscopy, 21(8), 1441–1445. https://doi.org/10.1007/s00464-007-9261-5
  • Rodríguez-Torres, J., Lucena-Aguilera, M. D. M., Cabrera-Martos, I., López-López, L., Torres-Sánchez, I., & Valenza, M. C. (2019). Musculoskeletal signs associated with shoulder pain in patients undergoing video-assisted thoracoscopic surgery. Pain Medicine, 20(10), 1997–2003. https://doi.org/10.1093/pm/pny230
  • Rosenmüller, M., Haapamäki, M. M., Nordin, P., Stenlund, H., & Nilsson, E. (2007). Cholecystectomy in Sweden 2000–2003: A nationwide study on procedures, patient characteristics, and mortality. BMC Gastroenterology, 7(1), 35. https://doi.org/10.1186/1471-230X-7-35
  • Schijven, M. P., & Jakimowicz, J. J. (2005). Validation of virtual reality simulators: Key to the successful integration of a novel teaching technology into minimal access surgery. Minimally Invasive Therapy & Allied Technologies, 14(4–5), 244–246. https://doi.org/10.1080/13645700500221881
  • Solomon, B., Bizekis, C., Dellis, S. L., Donington, J. S., Oliker, A., Balsam, L. B., Zervos, M., Galloway, A. C., Pass, H., & Grossi, E. A. (2011). Simulating video-assisted thoracoscopic lobectomy: A virtual reality cognitive task simulation. The Journal of Thoracic and Cardiovascular Surgery, 141(1), 249–255. https://doi.org/10.1016/j.jtcvs.2010.09.014
  • Tai, Y., Wei, L., Xiao, M., Zhou, H., Li, Q., Shi, J., & Nahavandi, S. (2018). A high-immersive medical training platform using direct intraoperative data. IEEE Access, 6(2018), 69438–69452. https://doi.org/10.1109/ACCESS.2018.2877732
  • Tai, Y., Wei, L., Zhou, H., Peng, J., Li, Q., Li, F., Zhang, J., Shi, J. (2019). Augmented-reality-driven medical simulation platform for percutaneous nephrolithotomy with cybersecurity awareness. International Journal of Distributed Sensor Networks, 15(4). https://doi.org/10.1177/1550147719840173
  • Tanagho, Y. S., Andriole, G. L., Paradis, A. G., Madison, K. M., Sandhu, G. S., Varela, J. E., & Benway, B. M. (2012). 2D versus 3D visualization: Impact on laparoscopic proficiency using the fundamentals of laparoscopic surgery skill set. Journal of Laparoendoscopic & Advanced Surgical Techniques, 22(9), 865–870. https://doi.org/10.1089/lap.2012.0220
  • Thawani, J. P., Ramayya, A. G., Abdullah, K. G., Hudgins, E., Vaughan, K., Piazza, M., Madsen, P. J., Buch, V., & Sean Grady, M. (2016). Resident simulation training in endoscopic endonasal surgery utilizing haptic feedback technology. Journal of Clinical Neuroscience, 34, 112–116. https://doi.org/10.1016/j.jocn.2016.05.036
  • Veronesi, G., Novellis, P., Voulaz, E., & Alloisio, M. (2016). Robot-assisted surgery for lung cancer: State of the art and perspectives. Lung Cancer, 101, 28–34. https://doi.org/10.1016/j.lungcan.2016.09.004
  • Villanueva, C., Xiong, J., & Rajput, S. (2020). Simulation-based surgical education in cardiothoracic training. ANZ Journal of Surgery, 90(6), 978–983. https://doi.org/10.1111/ans.15593
  • Wang, D., Zhang, Y., Hou, J., Wang, Y., Lv, P., Chen, Y., & Zhao, H. (2012). IDental: A haptic-based dental simulator and its preliminary user evaluation. IEEE Transactions on Haptics, 5(4), 332–343. https://doi.org/10.1109/TOH.2011.59
  • Yang, J., Wang, C., Jiang, B., Song, H., & Meng, Q. (2021). Visual perception enabled industry intelligence: State of the art, challenges and prospects. IEEE Transactions on Industrial Informatics, 17(3), 2204–2219. https://doi.org/10.1109/TII.2020.2998818
  • Zhang, Y., Sun, L., Song, H., & Cao, X. (2014). Ubiquitous WSN for healthcare: Recent advances and future prospects. IEEE Internet of Things Journal, 1(4), 311–318. https://doi.org/10.1109/JIOT.2014.2329462
  • Zundel, S., Lehnick, D., Heyne-Pietschmann, M., Trück, M., & Szavay, P. (2019). A suggestion on how to compare 2d and 3d laparoscopy: A qualitative analysis of the literature and randomized pilot study. Journal of Laparoendoscopic & Advanced Surgical Techniques, 29(1), 114–120. https://doi.org/10.1089/lap.2018.0164

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.