47
Views
0
CrossRef citations to date
0
Altmetric
Research Article

EEG, EOG, Likert Scale, and Interview Approaches for Assessing Stressful Hazard Perception Scenarios

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon & ORCID Icon show all
Received 20 Dec 2023, Accepted 16 May 2024, Published online: 03 Jun 2024

References

  • Affanni, A., Aminosharieh Najafi, T., & Guerci, S. (2022). Development of an EEG Headband for Stress Measurement on Driving Simulators. Sensors, 22(5), 1785. https://www.mdpi.com/1424-8220/22/5/1785 https://doi.org/10.3390/s22051785
  • Affanni, A., Najafi, T. A., & Guerci, S. (2021). Design of a low cost EEG sensor for the measurement of stress-related brain activity during driving [Paper presentation]. 2021 IEEE International Workshop on Metrology for Automotive (MetroAutomotive), 1-2 July 2021). https://doi.org/10.1109/MetroAutomotive50197.2021.9502859
  • Aliakbaryhosseinabadi, S., Kamavuako, E. N., Jiang, N., Farina, D., & Mrachacz-Kersting, N. (2017). Classification of EEG signals to identify variations in attention during motor task execution. Journal of Neuroscience Methods, 284, 27–34. https://doi.org/10.1016/j.jneumeth.2017.04.008
  • Ao, D., & Li, J. (2022). Subjective assessment for an advanced driver assistance system: A case study in China. Journal of Intelligent and Connected Vehicles, 5(2), 112–122. https://doi.org/10.1108/JICV-11-2021-0017
  • Appel, C.-P., Blomkvist, A.-C., Persson, L.-O., & SjóBerg, L. (1980). Mood and achievement in a difficult driving task. Ergonomics, 23(7), 605–612. https://doi.org/10.1080/00140138008924775
  • Auckland, R. A., Manning, W. J., Carsten, O. M. J., & Jamson, A. H. (2008). Advanced driver assistance systems: Objective and subjective performance evaluation. Vehicle System Dynamics, 46(sup1), 883–897. https://doi.org/10.1080/00423110802037131
  • Auyeung, B., Lombardo, M. V., Heinrichs, M., Chakrabarti, B., Sule, A., Deakin, J. B., Bethlehem, R. A. I., Dickens, L., Mooney, N., Sipple, J. A. N., Thiemann, P., & Baron-Cohen, S. (2015). Oxytocin increases eye contact during a real-time, naturalistic social interaction in males with and without autism. Translational Psychiatry, 5(2), e507-e507–e507. https://doi.org/10.1038/tp.2014.146
  • Beatty, J. (1982). Task-evoked pupillary responses, processing load, and the structure of processing resources. Psychological Bulletin, 91(2), 276–292. https://doi.org/10.1037/0033-2909.91.2.276
  • Benjamini, Y., & Hochberg, Y. (1995). Controlling the false discovery rate: A practical and powerful approach to multiple testing. Journal of the Royal Statistical Society Series B: Statistical Methodology, 57(1), 289–300. https://doi.org/10.1111/j.2517-6161.1995.tb02031.x
  • Benjamini, Y., & Hochberg, Y. (1997). Multiple hypotheses testing with weights. Scandinavian Journal of Statistics, 24(3), 407–418. https://doi.org/10.1111/1467-9469.00072
  • Biasiucci, A., Franceschiello, B., & Murray, M. M. (2019). Electroencephalography. Current Biology: CB, 29(3), R80–R85. https://doi.org/10.1016/j.cub.2018.11.052
  • Borowsky, A., Oron-Gilad, T., Meir, A., & Parmet, Y. (2012). Drivers’ perception of vulnerable road users: A hazard perception approach. Accident; Analysis and Prevention, 44(1), 160–166. https://doi.org/10.1016/j.aap.2010.11.029
  • Bruña, R., Maestú, F., & Pereda, E. (2018). Phase locking value revisited: Teaching new tricks to an old dog. Journal of Neural Engineering, 15(5), 056011. https://doi.org/10.1088/1741-2552/aacfe4
  • Cacioppo, J. T., & Tassinary, L. G. (1990). Inferring psychological significance from physiological signals. The American Psychologist, 45(1), 16–28. https://doi.org/10.1037/0003-066x.45.1.16
  • Cao, S., Samuel, S., Murzello, Y., Ding, W., Zhang, X., & Niu, J. (2022). Hazard perception in driving: A systematic literature review. Transportation Research Record: Journal of the Transportation Research Board, 2676(12), 666–690. https://doi.org/10.1177/03611981221096666
  • Cerrolaza, J. J., Villanueva, A., & Cabeza, R. (2012). Study of polynomial mapping functions in video-oculography eye trackers. ACM Transactions on Computer-Human Interaction,), 19(2), 1–25. https://doi.org/10.1145/2240156.2240158
  • Chatrian, G. E., Lettich, E., & Nelson, P. L. (1985). Ten percent electrode system for topographic studies of spontaneous and evoked EEG activities. American Journal of EEG Technology, 25(2), 83–92. https://doi.org/10.1080/00029238.1985.11080163
  • Chaumon, M., Bishop, D. V. M., & Busch, N. A. (2015). A practical guide to the selection of independent components of the electroencephalogram for artifact correction. Journal of Neuroscience Methods, 250, 47–63. https://doi.org/10.1016/j.jneumeth.2015.02.025
  • Chen, J., Wang, S., He, E., Wang, H., & Wang, L. (2023). The architecture of functional brain network modulated by driving during adverse weather conditions. Cognitive Neurodynamics, 17(2), 547–553. https://doi.org/10.1007/s11571-022-09825-y
  • Chen, L-l., Zhao, Y., Ye, P-f., Zhang, J., & Zou, J-z (2017). Detecting driving stress in physiological signals based on multimodal feature analysis and kernel classifiers. Expert Systems with Applications, 85, 279–291. https://doi.org/10.1016/j.eswa.2017.01.040
  • Cheng, A. S. K., Ng, T. C. K., & Lee, H. C. (2011). A comparison of the hazard perception ability of accident-involved and accident-free motorcycle riders. Accident; Analysis and Prevention, 43(4), 1464–1471. https://doi.org/10.1016/j.aap.2011.02.024
  • Choi, Y., Kim, M., & Chun, C. (2015). Measurement of occupants’ stress based on electroencephalograms (EEG) in twelve combined environments. Building and Environment, 88, 65–72. https://doi.org/10.1016/j.buildenv.2014.10.003
  • Chung, E., Kim, J.-H., Park, D.-S., & Lee, B.-H. (2015). Effects of brain-computer interface-based functional electrical stimulation on brain activation in stroke patients: A pilot randomized controlled trial. Journal of Physical Therapy Science, 27(3), 559–562. https://doi.org/10.1589/jpts.27.559
  • Crundall, D., Chapman, P., Phelps, N., & Underwood, G. (2003). Eye movements and hazard perception in police pursuit and emergency response driving. Journal of Experimental Psychology. Applied, 9(3), 163–174. https://doi.org/10.1037/1076-898X.9.3.163
  • De Vos, J., Schwanen, T., Van Acker, V., & Witlox, F. (2013). Travel and subjective well-being: a focus on findings, methods and future research needs. Transport Reviews, 33(4), 421–442. https://doi.org/10.1080/01441647.2013.815665
  • Delorme, A., & Makeig, S. (2004). EEGLAB: An open source toolbox for analysis of single-trial EEG dynamics including independent component analysis. Journal of Neuroscience Methods, 134(1), 9–21. https://doi.org/10.1016/j.jneumeth.2003.10.009
  • Deonna, J. A. (2006). Emotion, perception and perspective. dialectica, 60(1), 29–46. https://doi.org/10.1111/j.1746-8361.2005.01031.x
  • Di Stasi, L. L., Diaz-Piedra, C., Morales, J. M., Kurapov, A., Tagliabue, M., Bjärtå, A., Megias, A., Bernhardsson, J., Paschenko, S., Romero, S., Cándido, A., & Catena, A. (2020). A cross-cultural comparison of visual search strategies and response times in road hazard perception testing. Accident; Analysis and Prevention, 148, 105785. https://doi.org/10.1016/j.aap.2020.105785
  • Ding, Y., Cao, Y., Qu, Q., & Duffy, V. G. (2020). An Exploratory Study Using Electroencephalography (EEG) to measure the smartphone user experience in the short term. International Journal of Human–Computer Interaction, 36(11), 1008–1021. https://doi.org/10.1080/10447318.2019.1709330
  • Dorn, L., & Matthews, G. (1995). Prediction of mood and risk appraisals from trait measures: Two studies of simulated driving. European Journal of Personality, 9(1), 25–42. https://doi.org/10.1002/per.2410090103
  • Ebel, P., Lingenfelder, C., & Vogelsang, A. (2023). Multitasking while driving: how drivers self-regulate their interaction with in-vehicle touchscreens in automated driving. International Journal of Human–Computer Interaction, 39(16), 3162–3179. https://doi.org/10.1080/10447318.2023.2215634
  • Eldenfria, A., & Al-Samarraie, H. (2019). Towards an Online Continuous Adaptation Mechanism (OCAM) for enhanced engagement: An EEG study. International Journal of Human–Computer Interaction, 35(20), 1960–1974. https://doi.org/10.1080/10447318.2019.1595303
  • Fan, J., Wade, J. W., Key, A. P., Warren, Z. E., & Sarkar, N. (2018). EEG-based affect and workload recognition in a virtual driving environment for ASD intervention. IEEE Transactions on Bio-Medical Engineering, 65(1), 43–51. https://doi.org/10.1109/TBME.2017.2693157
  • Fletcher, L., & Zelinsky, A. (2009). Driver inattention detection based on eye gaze—road event correlation. The International Journal of Robotics Research, 28(6), 774–801. https://doi.org/10.1177/0278364908099459
  • Gaillard, A. W. (2018). Concentration, stress and performance. In Performance under stress (pp. 75–92). CRC Press.
  • Gevins, A., Smith, M. E., McEvoy, L., & Yu, D. (1997). High-resolution EEG mapping of cortical activation related to working memory: Effects of task difficulty, type of processing, and practice. Cerebral Cortex (New York, N.Y.: 1991), 7(4), 374–385. https://doi.org/10.1093/cercor/7.4.374
  • Grootjen, J. W., Weingärtner, H., & Mayer, S. (2023). Highlighting the Challenges of Blinks in Eye Tracking for Interactive Systems [Paper presentation]. Proceedings of the 2023 symposium on eye tracking research and applications, Tubingen, Germany. https://doi.org/10.1145/3588015.3589202
  • Gulian, E., Matthews, G., Glendon, A. I., Davies, D. R., & Debney, L. M. (1989). Dimensions of driver stress. Ergonomics, 32(6), 585–602. https://doi.org/10.1080/00140138908966134
  • Guo, F., Wang, X.-S., Shao, H., Wang, X.-R., & Liu, W.-L. (2020). How user’s first impression forms on mobile user interface?: An ERPs study. International Journal of Human–Computer Interaction, 36(9), 870–880. https://doi.org/10.1080/10447318.2019.1699745
  • Haak, M., Bos, S., Panic, S., Rothkrantz, L. J. (2009). Detecting stress using eye blinks and brain activity from EEG signals [Paper presentation]. Proceeding of the 1st Driver Car Interaction and Interface (DCII 2008) (pp. 35–60).
  • Halim, Z., & Rehan, M. (2020). On identification of driving-induced stress using electroencephalogram signals: A framework based on wearable safety-critical scheme and machine learning. Information Fusion, 53, 66–79. https://doi.org/10.1016/j.inffus.2019.06.006
  • Hancox, G., Richardson, J., & Morris, A. (2013). Drivers’ willingness to engage with their mobile phone: The influence of phone function and road demand. IET Intelligent Transport Systems, 7(2), 215–222. https://doi.org/10.1049/iet-its.2012.0133
  • Henderson, J. M., & Hollingworth, A. (1999). High-level scene perception. Annual Review of Psychology, 50(1), 243–271. https://doi.org/10.1146/annurev.psych.50.1.243
  • Horswill, M. S., Hill, A., Silapurem, L., & Watson, M. O. (2021). A thousand years of crash experience in three hours: An online hazard perception training course for drivers. Accident; Analysis and Prevention, 152, 105969. https://doi.org/10.1016/j.aap.2020.105969
  • Hu, T.-Y., Xie, X., & Li, J. (2013). Negative or positive? The effect of emotion and mood on risky driving. Transportation Research Part F: Traffic Psychology and Behaviour, 16, 29–40. https://doi.org/10.1016/j.trf.2012.08.009
  • Huang, H., Zhang, J., Zhu, L., Tang, J., Lin, G., Kong, W., Lei, X., & Zhu, L. (2021). EEG-based sleep staging analysis with functional connectivity. Sensors, 21(6), 1988. https://www.mdpi.com/1424-8220/21/6/1988 https://doi.org/10.3390/s21061988
  • Huestegge, L., Skottke, E.-M., Anders, S., Müsseler, J., & Debus, G. (2010). The development of hazard perception: Dissociation of visual orientation and hazard processing. Transportation Research Part F: Traffic Psychology and Behaviour, 13(1), 1–8. https://doi.org/10.1016/j.trf.2009.09.005
  • Javed, E., Wang, S. H., Siebenhühner, F., Palva, J. M., & Palva, S. (2021). Public deliverable report. https://virtualbraincloud-2020.eu/files/tvb/documents/public%20deliverables/period%202/TVB-Cloud_D3.7_cohort.pdf
  • Jeon, J., & Cai, H. (2021). Classification of construction hazard-related perceptions using: Wearable electroencephalogram and virtual reality. Automation in Construction, 132, 103975. https://doi.org/10.1016/j.autcon.2021.103975
  • Jeon, M. (2015). Towards affect-integrated driving behaviour research. Theoretical Issues in Ergonomics Science, 16(6), 553–585. https://doi.org/10.1080/1463922X.2015.1067934
  • Jeon, M., Walker, B. N., & Yim, J.-B. (2014). Effects of specific emotions on subjective judgment, driving performance, and perceived workload. Transportation Research Part F: Traffic Psychology and Behaviour, 24, 197–209. https://doi.org/10.1016/j.trf.2014.04.003
  • Kahneman, D. a. (2011). Thinking, fast and slow (1st ed.). Farrar, Straus and Giroux. https://search.library.wisc.edu/catalog/9910114919702121
  • Kappenman, E. S., & Luck, S. J. (2010). The effects of electrode impedance on data quality and statistical significance in ERP recordings. Psychophysiology, 47(5), 888–904. https://doi.org/10.1111/j.1469-8986.2010.01009.x
  • Karavanaki, K., Davies, A. G., Hunt, L. P., Morgan, M. H., & Baum, J. D. (1994). Pupil size in diabetes. Archives of Disease in Childhood, 71(6), 511–515. https://doi.org/10.1136/adc.71.6.511
  • Kerautret, L., Dabic, S., & Navarro, J. (2023). Exploring hazard anticipation and stress while driving in light of defensive behavior theory. Scientific Reports, 13(1), 7883. https://doi.org/10.1038/s41598-023-34714-7
  • Kim, S., Rhee, W., Choi, D., Jang, Y. J., & Yoon, Y. (2018). Characterizing driver stress using physiological and operational data from real-world electric vehicle driving experiment. International Journal of Automotive Technology, 19(5), 895–906. https://doi.org/10.1007/s12239-018-0086-0
  • King, J. T., Prasad, M., Tsai, T., Ming, Y. R., & Lin, C. T. (2020). Influence of time pressure on inhibitory brain control during emergency driving. IEEE Transactions on Systems, Man, and Cybernetics: Systems, 50(11), 4408–4414. https://doi.org/10.1109/TSMC.2018.2850323
  • Kübler, T. C., Kasneci, E., Rosenstiel, W., Schiefer, U., Nagel, K., & Papageorgiou, E. (2014). Stress-indicators and exploratory gaze for the analysis of hazard perception in patients with visual field loss. Transportation Research Part F: Traffic Psychology and Behaviour, 24, 231–243. https://doi.org/10.1016/j.trf.2014.04.016
  • Lachaux, J.-P., Rodriguez, E., Martinerie, J., & Varela, F. J. (1999). Measuring phase synchrony in brain signals. Human Brain Mapping, 8(4), 194–208. https://doi.org/10.1002/(SICI)1097-0193(1999)8:4<194::AID-HBM4>3.0.CO;2-C
  • Lee, Y.-J., Kim, H.-G., Cheon, E.-J., Kim, K., Choi, J.-H., Kim, J.-Y., Kim, J.-M., & Koo, B.-H. (2019). The analysis of electroencephalography changes before and after a single neurofeedback alpha/theta training session in university students. Applied Psychophysiology and Biofeedback, 44(3), 173–184. https://doi.org/10.1007/s10484-019-09432-4
  • Li, H., Chang, R., & Sui, X. (2022). The effect of the degree and location of danger in traffic hazard perception: An ERP study. Neuroreport, 33(5), 215–220. https://doi.org/10.1097/WNR.0000000000001770
  • Li, S., Liu, S., Huang, P., Liu, S., Zhang, W., Guo, X., & Liu, Z. (2021). The modulation of attentional deployment on regret: An event-related potential study. Neuroreport, 32(7), 621–630. https://doi.org/10.1097/WNR.0000000000001640
  • Li, Z., Liu, C., Wang, Q., Liang, K., Han, C., Qiao, H., Zhang, J., & Meng, F. (2021). Abnormal functional brain network in Parkinson’s Disease and the effect of acute deep brain stimulation. Frontiers in Neurology, 12, 715455. https://doi.org/10.3389/fneur.2021.715455
  • Lim, S., Yeo, M., & Yoon, G. (2019). Comparison between concentration and immersion based on EEG analysis. Sensors, 19(7), 1669. https://www.mdpi.com/1424-8220/19/7/1669 https://doi.org/10.3390/s19071669
  • Lopez-Calderon, J., & Luck, S. J. (2014). ERPLAB: An open-source toolbox for the analysis of event-related potentials [Technology Report]. Frontiers in Human Neuroscience, 8, 213. https://doi.org/10.3389/fnhum.2014.00213
  • Lyu, Z., Qi, C., & Zhu, S. (2022). Driver’s attention allocation and mental workload at different random hazard points on prairie highway. Journal of Advanced Transportation, 2022, 1–16. https://doi.org/10.1155/2022/3837509
  • Mahajan, R., Consul-Pacareu, S., Abusaud, M., Sahadat, M., & Morshed, B. (2013). Ambulatory EEG NeuroMonitor platform for engagement studies of children with development delays [Paper presentation]. Spie, (Vol. 8719). https://doi.org/10.1117/12.2016205
  • McKenna, F., & Crick, J. (1991). Experience and expertise in hazard perception [Paper presentation]. Behavioural Research in Road Safety, Proceedings of a Seminar Held at Nottingham University.
  • Mirvis, P. H., & Csikszentmihalyi, M. (1991). Flow: The psychology of optimal experience [Flow: The Psychology of Optimal Experience, Michael Csikszentmihalyi]. The Academy of Management Review, 16(3), 636–640. https://doi.org/10.2307/258925
  • Mormann, F., Lehnertz, K., David, P., & E. Elger, C. (2000). Mean phase coherence as a measure for phase synchronization and its application to the EEG of epilepsy patients. Physica D: Nonlinear Phenomena, 144(3-4), 358–369. https://doi.org/10.1016/S0167-2789(00)00087-7
  • Neubauer, C., Matthews, G., Langheim, L., & Saxby, D. (2012). Fatigue and voluntary utilization of automation in simulated driving. Human Factors, 54(5), 734–746. https://doi.org/10.1177/0018720811423261
  • Nielsen, L., & Kaszniak, A. W. (2007). Conceptual, theoretical, and methodological issues in inferring subjective emotion experience. In Handbook of emotion elicitation and assessment (pp. 361–375). Oxford University Press.
  • Niu, J., Xu, H., Sun, Y., & Qin, H. (2020). Study on drivers’ visual perception characteristics during the take-over of vehicle control in automated driving. Human Factors and Ergonomics in Manufacturing & Service Industries, 30(6), 377–384. https://doi.org/10.1002/hfm.20860
  • Nolte, G., Bai, O., Wheaton, L., Mari, Z., Vorbach, S., & Hallett, M. (2004). Identifying true brain interaction from EEG data using the imaginary part of coherency. Clinical Neurophysiology: official Journal of the International Federation of Clinical Neurophysiology, 115(10), 2292–2307. https://doi.org/10.1016/j.clinph.2004.04.029
  • Oh, Y.-A., Kim, S.-O., & Park, S.-A. (2019). Real foliage plants as visual stimuli to improve concentration and attention in elementary students. International Journal of Environmental Research and Public Health, 16(5), 796. https://www.mdpi.com/1660-4601/16/5/796 https://doi.org/10.3390/ijerph16050796
  • Pan, J., Cai, X., Mo, D., Yu, Y., & Li, Y. (2023). Residual attention capsule network for multimodal EEG- and EOG-based driver vigilance estimation. IEEE Transactions on Instrumentation and Measurement, 72, 1–12. https://doi.org/10.1109/TIM.2023.3307756
  • Park, D., Lee, Y., & Kim, Y. M. (2023). Effects of autonomous driving context and anthropomorphism of in-vehicle voice agents on intimacy, trust, and intention to use. International Journal of Human–Computer Interaction, 1–14. https://doi.org/10.1080/10447318.2023.2262271
  • Pearse, N. (2011). Deciding on the scale granularity of response categories of likert type scales: the case of a 21‑point scale. Electronic Journal of Business Research Methods, 9(2), 159–171.
  • Pêcher, C., Lemercier, C., & Cellier, J.-M. (2011). The influence of emotions on driving behavior. In Traffic psychology: An international perspective (pp. 145–158). Nova Science Publishers.
  • Perello-March, J. R., Burns, C. G., Birrell, S. A., Woodman, R., & Elliott, M. T. (2022). Physiological measures of risk perception in highly automated driving. IEEE Transactions on Intelligent Transportation Systems, 23(5), 4811–4822. https://doi.org/10.1109/TITS.2022.3146793
  • Pollmann, K., Stefani, O., Bengsch, A., Peissner, M., & Vukelić, M. (2019). How to Work in the Car of the Future? A Neuroergonomical Study Assessing Concentration, Performance and Workload Based on Subjective, Behavioral and Neurophysiological Insights [Paper presentation]. Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems, Glasgow, Scotland UK. https://doi.org/10.1145/3290605.3300284
  • Pope, A. T., Bogart, E. H., & Bartolome, D. S. (1995). Biocybernetic system evaluates indices of operator engagement in automated task. Biological Psychology, 40(1-2), 187–195. https://doi.org/10.1016/0301-0511(95)05116-3
  • Prajapati, B., Dunne, M., & Armstrong, R. (2010). Sample size estimation and statistical power analyses. Optometry Today, 16(7), 10–18.
  • Punde, P., & Manza, R. (2022). Review of algorithms for detection of fixations from Eye Tracker Database. International Journal of Latest Trends in Engineering & Technology, 7, 247. https://doi.org/10.21172/1.73.034
  • Rahman, A. U., Tubaishat, A., Al-Obeidat, F., Halim, Z., Tahir, M., & Qayum, F. (2022). Extended ICA and M-CSP with BiLSTM towards improved classification of EEG signals. Soft Computing, 26(20), 10687–10698. https://doi.org/10.1007/s00500-022-06847-w
  • Rayner, K. (1998). Eye movements in reading and information processing: 20 years of research. Psychological Bulletin, 124(3), 372–422. https://doi.org/10.1037/0033-2909.124.3.372
  • Recarte, M. A., & Nunes, L. M. (2000). Effects of verbal and spatial-imagery tasks on eye fixations while driving. Journal of Experimental Psychology. Applied, 6(1), 31–43. https://doi.org/10.1037/1076-898x.6.1.31
  • Rodríguez-Dagnino, R. M. (2019). Mathieu windows for signal processing. Circuits, Systems, and Signal Processing, 38(6), 2736–2766. https://doi.org/10.1007/s00034-018-0989-z
  • Rui, Z., Chang, D., & Gu, Z. (2023). Event-related potential and oscillatory cortical activities of artistic methodology in information visualization design in human–computer interface. International Journal of Human-Computer Studies, 177, 103066. https://doi.org/10.1016/j.ijhcs.2023.103066
  • Rui, Z., & Gu, Z. (2021). A Review of EEG and fMRI measuring aesthetic processing in visual user experience research. Computational Intelligence and Neuroscience, 2021, 2070209–2070227. https://doi.org/10.1155/2021/2070209
  • Rui, Z., & Gu, Z. (2023). Use of event-related potentials to assess visual–auditory multisensory information in the decision-making processes related to fast-consuming behavior. International Journal of Human–Computer Interaction, 1–24. https://doi.org/10.1080/10447318.2023.2260983
  • Savage, S. W., Potter, D. D., & Tatler, B. W. (2013). Does preoccupation impair hazard perception? A simultaneous EEG and Eye Tracking study. Transportation Research Part F: Traffic Psychology and Behaviour, 17, 52–62. https://doi.org/10.1016/j.trf.2012.10.002
  • Savage, S. W., Potter, D. D., & Tatler, B. W. (2020). The effects of cognitive distraction on behavioural, oculomotor and electrophysiological metrics during a driving hazard perception task. Accident; Analysis and Prevention, 138, 105469. https://doi.org/10.1016/j.aap.2020.105469
  • Schaufeli, W. (2014). What is engagement? (pp. 29–49). Routledge. https://doi.org/10.4324/9780203076965-10
  • Schmidt, F. N., & Gifford, R. (1989). A dispositional approach to hazard perception: Preliminary development of the environmental appraisal inventory. Journal of Environmental Psychology, 9(1), 57–67. https://doi.org/10.1016/S0272-4944(89)80026-X
  • Schneider, S., Guardiera, S., Abel, T., Carnahan, H., & Strüder, H. K. (2009). Artificial gravity results in changes in frontal lobe activity measured by EEG tomography. Brain Research, 1285, 119–126. https://doi.org/10.1016/j.brainres.2009.06.026
  • Scrimgeour, A., Szymkowiak, A., Hardie, S., & Scott-Brown, K. (2011). Gender and Hazard perception skills in relation to road traffic police officers. The Police Journal, 84(4), 333–343. https://doi.org/10.1350/pojo.2011.84.4.524
  • Skurka, C., Niederdeppe, J., Romero-Canyas, R., & Acup, D. (2018). Pathways of influence in emotional appeals: benefits and tradeoffs of using fear or humor to promote climate change-related intentions and risk perceptions. Journal of Communication, 68(1), 169–193. https://doi.org/10.1093/joc/jqx008
  • Smith, A. (2022). China’s Xpeng launches city navigation guided pilot for P5 customers. Autofutures. https://www.autofutures.tv/topics/china-s-xpeng-launches-city-navigation- guided-pilot-for-p5-customers/s/515117aa-0a2f-4ca8-9510-450a266e70c0
  • Sowndhararajan, K., Cho, H., Yu, B., Song, J., & Kim, S. (2016). Effect of inhalation of essential oil from Inula helenium L. root on electroencephalographic (EEG) activity of the human brain. European Journal of Integrative Medicine, 8(4), 453–457. https://doi.org/10.1016/j.eujim.2016.01.005
  • Stropahl, M., Bauer, A.-K R., Debener, S., & Bleichner, M. G. (2018). Source-modeling auditory processes of EEG Data using EEGLAB and brainstorm [Protocols]. Frontiers in Neuroscience, 12, 309. https://doi.org/10.3389/fnins.2018.00309
  • Sugiono, S., Denny, W., & Andriani, D. P. (2018). The impact of road complexity on the psychophysiological load experienced by car drivers using electroencephalography (EEG) measurement of brainwaves. Acta Neuropsychologica, 16(4), 361–374. https://doi.org/10.5604/01.3001.0012.7926
  • Tadel, F., Baillet, S., Mosher, J. C., Pantazis, D., & Leahy, R. M. (2011). Brainstorm: A user-friendly application for MEG/EEG analysis. Computational Intelligence and Neuroscience, 2011, 879716. https://doi.org/10.1155/2011/879716
  • Taherdoost, H. (2019). What is the best response scale for survey and questionnaire design; review of different lengths of rating scale/attitude scale/Likert scale (pp. 1–10).
  • Tesche, C. D., & Houck, J. M. (2020). Discordant alpha-band transcranial alternating current stimulation affects cortico-cortical and cortico-cerebellar connectivity. Brain Connectivity, 10(4), 170–182. https://doi.org/10.1089/brain.2019.0710
  • Tremblay, S. (2004). A cognitive approach to situation awareness: Theory and application. Routledge. https://doi.org/10.4324/9781315263977
  • Ullah, S., & Halim, Z. (2021). Imagined character recognition through EEG signals using deep convolutional neural network. Medical & Biological Engineering & Computing, 59(5), 1167–1183. https://doi.org/10.1007/s11517-021-02368-0
  • Vaezipour, A., Horswill, M. S., Andrews, N. E., Johnston, V., Delhomme, P., & Oviedo-Trespalacios, O. (2022). How distracting is chronic pain? The impact of chronic pain on driving behaviour and hazard perception. Accident; Analysis and Prevention, 178, 106856. https://doi.org/10.1016/j.aap.2022.106856
  • van Beijsterveldt, C. E. M., & Boomsma, D. I. (1994). Genetics of the human electroencephalogram (EEG) and event-related brain potentials (ERPs): a review. Human Genetics, 94(4), 319–330. https://doi.org/10.1007/BF00201587
  • Vanhollebeke, G., De Smet, S., De Raedt, R., Baeken, C., van Mierlo, P., & Vanderhasselt, M.-A. (2022). The neural correlates of psychosocial stress: A systematic review and meta-analysis of spectral analysis EEG studies. Neurobiology of Stress, 18, 100452. https://doi.org/10.1016/j.ynstr.2022.100452
  • Vesoulis, Z. A., Gamble, P. G., Jain, S., Ters, N. M. E., Liao, S. M., & Mathur, A. M. (2020). WU-NEAT: A clinically validated, open-source MATLAB toolbox for limited-channel neonatal EEG analysis. Computer Methods and Programs in Biomedicine, 196, 105716. https://doi.org/10.1016/j.cmpb.2020.105716
  • Vintila, F., Kübler, T. C., & Kasneci, E. (2017). Pupil response as an indicator of hazard perception during simulator driving. Journal of Eye Movement Research, 10(4), 3. https://doi.org/10.16910/jemr.10.4.3
  • Wallis, T. S. A., & Horswill, M. S. (2007). Using fuzzy signal detection theory to determine why experienced and trained drivers respond faster than novices in a hazard perception test. Accident; Analysis and Prevention, 39(6), 1177–1185. https://doi.org/10.1016/j.aap.2007.03.003
  • Warr, P., Bindl, U. K., Parker, S. K., & Inceoglu, I. (2014). Four-quadrant investigation of job-related affects and behaviours. European Journal of Work and Organizational Psychology, 23(3), 342–363. https://doi.org/10.1080/1359432X.2012.744449
  • Whitehead, K., Meek, J., & Fabrizi, L. (2018). Developmental trajectory of movement-related cortical oscillations during active sleep in a cross-sectional cohort of pre-term and full-term human infants. Scientific Reports, 8(1), 17516. https://doi.org/10.1038/s41598-018-35850-1
  • Winkler, I., Haufe, S., & Tangermann, M. (2011). Automatic classification of artifactual ICA-components for artifact removal in EEG signals. Behavioral and Brain Functions: BBF, 7(1), 30. https://doi.org/10.1186/1744-9081-7-30
  • Wood, G., Hartley, G., Furley, P. A., & Wilson, M. R. (2016). Working memory capacity, visual attention and hazard perception in driving. Journal of Applied Research in Memory and Cognition, 5(4), 454–462. https://doi.org/10.1016/j.jarmac.2016.04.009
  • Wu, Z., Zhao, L., Liu, G., Chai, J., Huang, J., & Ai, X. (2023). The effect of AR-HUD takeover assistance types on driver situation awareness in highly automated driving: A 360-degree panorama experiment. International Journal of Human–Computer Interaction, 1–18. https://doi.org/10.1080/10447318.2023.2254645
  • Wyczesany, M., Kaiser, J., & Coenen, A. M. L. (2008). Subjective mood estimation co-varies with spectral power EEG characteristics. Acta Neurobiologiae Experimentalis, 68(2), 180–192. https://doi.org/10.55782/ane-2008-1687
  • Xiang, W., & Huang, Y. (2023). Differed risk perception in manual and automated driving: An empirical study of varied conditions. International Journal of Human–Computer Interaction, 1–11. https://doi.org/10.1080/10447318.2023.2273675
  • Xing, Y., Park, S., Akash, K., Misu, T., & Boyle, L. N. (2023). The impact of environmental features on drivers’ situation awareness using real-world driving scenarios. International Journal of Human–Computer Interaction, 39(16), 3203–3212. https://doi.org/10.1080/10447318.2023.2241629
  • Yuvaraj, R., Murugappan, M., Mohamed Ibrahim, N., Iqbal, M., Sundaraj, K., Mohamad, K., Palaniappan, R., Mesquita, E., & Satiyan, M. (2014). On the analysis of EEG power, frequency and asymmetry in Parkinson’s disease during emotion processing. Behavioral and Brain Functions: BBF, 10(1), 12. https://doi.org/10.1186/1744-9081-10-12
  • Zhang, D., Chen, F., Zhu, J., Wang, C., Cheng, J., Zhang, Y., Bo, W., & Zhang, P. (2022). Research on drivers’ hazard perception in plateau environment based on visual characteristics. Accident; Analysis and Prevention, 166, 106540. https://doi.org/10.1016/j.aap.2021.106540
  • Zhang, X., Yan, X., Stylli, J., & Platt, M. L. (2021). Exploring the effects of EEG signals on collision cases happening in the process of young drivers’ braking. Transportation Research Part F: Traffic Psychology and Behaviour, 80, 381–398. https://doi.org/10.1016/j.trf.2021.05.010
  • Zhao, X., Du, Y., Yang, L., Mao, E., Guo, D., & Zhu, Z. (2023). Effects of road type and IVIS task type on driver behavior and driving performance in agricultural tractors. International Journal of Human–Computer Interaction, 1–14. https://doi.org/10.1080/10447318.2023.2183309

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.