362
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Devising a High-Level Command Language for the Teleoperation of Autonomous Vehicles

ORCID Icon & ORCID Icon
Received 08 Jan 2024, Accepted 20 May 2024, Published online: 05 Jun 2024

References

  • Adams, J. A. (2007). Unmanned Vehicle Situation Awareness: A Path Forward. Proceedings of the 2007 Human Systems Integration Symposium, p. 615.
  • Badue, C., Guidolini, R., Carneiro, R. V., Azevedo, P., Cardoso, V. B., Forechi, A., Jesus, L., Berriel, R., Paixão, T. M., Mutz, F., de Paula Veronese, L., Oliveira-Santos, T., & De Souza, A. F. (2021). Self-driving cars: A survey. Expert Systems with Applications, 165. https://doi.org/10.1016/j.eswa.2020.113816
  • Bogdoll, D., Breitenstein, J., Heidecker, F., Bieshaar, M., Sick, B., Fingscheidt, T., & Zollner, J. M. (2021, October). Description of Corner Cases in Automated Driving: Goals and Challenges [Paper presentation]. IEEE International Conference on Computer Vision, 1023–1028. https://doi.org/10.1109/ICCVW54120.2021.00119
  • Bogdoll, D., Orf, S., Töttel, L., & Zöllner, J. M. (2021). Taxonomy and survey on remote human input systems for driving automation systems. http://arxiv.org/abs/2109.08599
  • Bout, M., Brenden, A. P., Klingeagrd, M., Habibovic, A., & Böckle, M. P. (2017). A head-mounted display to support teleoperations of shared automated vehicles [Paper presentation]. AutomotiveUI 2017 - 9th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, Adjunct Proceedings, pp. 62–66. https://doi.org/10.1145/3131726.3131758
  • Colley, M., & Rukzio, E. (2020). A design space for external communication of autonomous vehicles [Paper presentation]. Proceedings - 12th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2020, pp. 212–222. https://doi.org/10.1145/3409120.3410646
  • Dixit, V. V., Chand, S., & Nair, D. J. (2016). Autonomous vehicles: Disengagements, accidents and reaction times. PLoS One, 11(12), e0168054. https://doi.org/10.1371/journal.pone.0168054
  • Durantin, G., Gagnon, J. F., Tremblay, S., & Dehais, F. (2014). Using near infrared spectroscopy and heart rate variability to detect mental overload. Behavioural Brain Research, 259, 16–23. https://doi.org/10.1016/j.bbr.2013.10.042
  • Eisma, Y. B., van Bergen, S., ter Brake, S. M., Hensen, M. T. T., Tempelaar, W. J., & de Winter, J. C. F. (2019). External human-machine interfaces: The effect of display location on crossing intentions and eye movements. Information (Switzerland), 11(1), 13. https://doi.org/10.3390/info11010013
  • Fagnant, D. J., & Kockelman, K. (2015). Preparing a nation for autonomous vehicles: Opportunities, barriers and policy recommendations. Transportation Research Part A: Policy and Practice, 77, 167–181. https://doi.org/10.1016/j.tra.2015.04.003
  • Favarò, F., Eurich, S., & Nader, N. (2018). Autonomous vehicles’ disengagements: Trends, triggers, and regulatory limitations. Accident; Analysis and Prevention, 110, 136–148. https://doi.org/10.1016/j.aap.2017.11.001
  • Felberbaum, Y., & Lanir, J. (2018). Better understanding of foot gestures: An elicitation study [Paper presentation]. Conference on Human Factors in Computing Systems - Proceedings. https://doi.org/10.1145/3173574.3173908
  • Feng, J., Yu, S., Chen, G., Gong, W., Li, Q., Wang, J., & Zhan, H. (2020). Disengagement causes analysis of automated driving system [Paper presentation]. Proceedings - 2020 3rd World Conference on Mechanical Engineering and Intelligent Manufacturing, WCMEIM 2020, pp. 36–39. https://doi.org/10.1109/WCMEIM52463.2020.00014
  • Fennel, M., Zea, A., & Hanebeck, U. D. (2021). Haptic-guided path generation for remote car-like vehicles. IEEE Robotics and Automation Letters, 6(2), 4087–4094. https://doi.org/10.1109/LRA.2021.3067846
  • Flemisch, F. O., Bengler, K., Bubb, H., Winner, H., & Bruder, R. (2014). Towards cooperative guidance and control of highly automated vehicles: H-Mode and Conduct-by-Wire. Ergonomics, 57(3), 343–360. https://doi.org/10.1080/00140139.2013.869355
  • Fong, T. W., Conti, F., Grange, S., & Baur, C. (2001). Novel interfaces for remote driving: Gesture, haptic, and PDA. Mobile Robots XV and Telemanipulator and Telepresence Technologies VII, 4195, 300–311. https://doi.org/10.1117/12.417314
  • Fong, T., & Thorpe, C. (2001). Vehicle teleoperation interfaces. Autonomous Robots, 11(1), 9–18. https://doi.org/10.1023/A:1011295826834
  • Georg, J. M., & DIermeyer, F. (2019, October). An adaptable and immersive real time interface for resolving system limitations of automated vehicles with teleoperation [Paper presentation]. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, pp. 2659–2664. https://doi.org/10.1109/SMC.2019.8914306
  • Georg, J. M., Feiler, J., DIermeyer, F., & Lienkamp, M. (2018, November). Teleoperated driving, a key technology for automated driving? Comparison of actual test drives with a head mounted display and conventional monitors∗ [Paper presentation]. IEEE Conference on Intelligent Transportation Systems, Proceedings, ITSC, pp. 3403–3408. https://doi.org/10.1109/ITSC.2018.8569408
  • Goodall, N. (2020). Non-technological challenges for the remote operation of automated vehicles. Transportation Research Part A: Policy and Practice, 142, 14–26. https://doi.org/10.1016/j.tra.2020.09.024
  • Gorisse, G., Christmann, O., Amato, E. A., & Richir, S. (2017). First- and third-person perspectives in immersive virtual environments: Presence and performance analysis of embodied users. Frontiers in Robotics and AI, 4. https://doi.org/10.3389/frobt.2017.00033
  • Grabowski, A., Jankowski, J., & Wodzyński, M. (2021). Teleoperated mobile robot with two arms: The influence of a human-machine interface, VR training and operator age. International Journal of Human Computer Studies, 156. https://doi.org/10.1016/j.ijhcs.2021.102707
  • Graf, G., & Hussmann, H. (2020). User requirements for remote teleoperation-based interfaces [Paper presentation]. Adjunct Proceedings - 12th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2020, pp. 85–88. https://doi.org/10.1145/3409251.3411730
  • Graf, G., Palleis, H., & Hussmann, H. (2020). A design space for advanced visual interfaces for teleoperated autonomous vehicles [Paper presentation]. ACM International Conference Proceeding Series. https://doi.org/10.1145/3399715.3399942
  • GreyB. (2021). Top 30 self driving technology and car companies. https://www.greyb.com/autonomous-vehicle-companies/#
  • Hampshire, R. C., Bao, S., Lasecki, W. S., Daw, A., & Pender, J. (2020). Beyond safety drivers: Applying air traffic control principles to support the deployment of driverless vehicles. PLoS One, 15(5), e0232837. https://doi.org/10.1371/journal.pone.0232837
  • Hedayati, H., Walker, M., & Szafir, D. (2018). Improving collocated robot teleoperation with augmented reality [Paper presentation]. ACM/IEEE International Conference on Human-Robot Interaction, pp. 78–86. https://doi.org/10.1145/3171221.3171251
  • Herger, M. (2022). 2021 disengagement report from California. https://thelastdriverlicenseholder.com/2022/02/09/2021-disengagement-report-from-california/
  • Hill, S. G., & Bodt, B. (2007). A field experiment of autonomous mobility: Operator workload for one and two robots [Paper presentation]. HRI 2007 - Proceedings of the 2007 ACM/IEEE Conference on Human-Robot Interaction - Robot as Team Member, pp. 169–176. https://doi.org/10.1145/1228716.1228739
  • Hussain, R., & Zeadally, S. (2019). Autonomous cars: Research results, issues, and future challenges. IEEE Communications Surveys & Tutorials, 21(2), 1275–1313. https://doi.org/10.1109/COMST.2018.2869360
  • Kettwich, C., Schrank, A., & Oehl, M. (2021). Teleoperation of highly automated vehicles in public transport: User-centered design of a human-machine interface for remote-operation and its expert usability evaluation. Multimodal Technologies and Interaction, 5(5), 26. https://doi.org/10.3390/mti5050026
  • Kot, T., & Novák, P. (2018). Application of virtual reality in teleoperation of the military mobile robotic system TAROS. International Journal of Advanced Robotic Systems, 15(1), 172988141775154. https://doi.org/10.1177/1729881417751545
  • Kusano, K. D., Scanlon, J. M., Chen, Y.-H., Mcmurry, T. L., Chen, R., Gode, T., & Victor, T. (2023). Comparison of Waymo Rider-only crash data to human benchmarks at 7.1 million miles. arXiv preprint arXiv:2312.12675.
  • Lanzer, M., Babel, F., Yan, F., Zhang, B., You, F., Wang, J., & Baumann, M. (2020). Designing communication strategies of autonomous vehicles with pedestrians: An intercultural study [Paper presentation]. Proceedings - 12th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2020, pp. 122–131. https://doi.org/10.1145/3409120.3410653
  • Litman, T. (2020). Autonomous vehicle implementation predictions: Implications for transport planning. Transportation Research Board Annual Meeting, 42, 1–39. https://trid.trb.org/View/1678741
  • Lv, C., Cao, D., Zhao, Y., Auger, D. J., Sullman, M., Wang, H., Dutka, L. M., Skrypchuk, L., & Mouzakitis, A. (2018). Analysis of autopilot disengagements occurring during autonomous vehicle testing. IEEE/CAA Journal of Automatica Sinica, 5(1), 58–68. https://doi.org/10.1109/JAS.2017.7510745
  • Macioszek, E. (2018). First and last mile delivery - problems and issues. In Advanced Solutions of Transport Systems for Growing Mobility: 14th Scientific and Technical Conference “Transport Systems. Theory & Practice 2017” Selected Papers (pp. 147–154). Springer International Publishing. https://doi.org/10.1007/978-3-319-62316-0_12
  • Mahadevan, K., Somanath, S., & Sharlin, E. (2018). Communicating awareness and intent in autonomous vehicle-pedestrian interaction [Paper presentation]. Conference on Human Factors in Computing Systems - Proceedings 2018-April, pp. 1–12. https://doi.org/10.1145/3173574.3174003
  • Majstorovic, D., Hoffmann, S., Pfab, F., Schimpe, A., Wolf, M.-M., & Diermeyer, F. (2022). Survey on teleoperation concepts for automated vehicles [Paper presentation]. https://doi.org/10.1109/SMC53654.2022.9945267
  • Murphy, R. R., Gandudi, V. B. M., & Adams, J. (2020). Applications of robots for COVID-19 response. http://arxiv.org/abs/2008.06976
  • Mutzenich, C., Durant, S., Helman, S., & Dalton, P. (2021). Updating our understanding of situation awareness in relation to remote operators of autonomous vehicles. Cognitive Research: principles and Implications, 6(1), 9. https://doi.org/10.1186/s41235-021-00271-8
  • Nguyen, T. T., Holländer, K., Hoggenmueller, M., Parker, C., & Tomitsch, M. (2019). Designing for projection-based communication between autonomous vehicles and pedestrians [Paper presentation]. Proceedings - 11th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2019, pp. 284–294. https://doi.org/10.1145/3342197.3344543
  • Politis, I., Brewster, S., & Pollick, F. (2015). Language-based multimodal displays for the handover of control in autonomous cars [Paper presentation], pp. 3–10. https://doi.org/10.1145/2799250.2799262
  • Reig, S., Norman, S., Morales, C. G., Das, S., Steinfeld, A., & Forlizzi, J. (2018). A field study of pedestrians and autonomous vehicles [Paper presentation]. Proceedings - 10th International ACM Conference on Automotive User Interfaces and Interactive Vehicular Applications, AutomotiveUI 2018, pp. 198–209. https://doi.org/10.1145/3239060.3239064
  • Ruiz, J., Li, Y., & Lank, E. (2011). User-defined motion gestures for mobile interaction [Paper presentation], pp. 197–206. Retrieved December 25, 2023, from https://dl-acm-org.ezproxy.haifa.ac.il/doi/10.1145/1978942.1978971 https://doi.org/10.1145/1978942.1978971
  • SAE. (2018). Taxonomy and definitions for terms related to driving automation systems for on-road motor vehicles.
  • Schitz, D., Graf, G., Rieth, D., & Aschemann, H. (2020). Corridor-based shared autonomy for teleoperated driving. IFAC-PapersOnLine, 53(2), 15368–15373. https://doi.org/10.1016/j.ifacol.2020.12.2351
  • Sheridan, T. B. (1989). Telerobotics. Automatica, 25(4), 487–507. https://doi.org/10.1016/0005-1098(89)90093-9
  • Sheridan, T. B., & Ferrell, W. R. (1963). Remote manipulative control with transmission delay. IEEE Transactions on Human Factors in Electronics, HFE-4(1), 25–29. https://doi.org/10.1109/THFE.1963.231283
  • Tener, F., & Lanir, J. (2023). Investigating intervention road scenarios for teleoperation of autonomous vehicles. Multimedia Tools and Applications, 1–17. https://doi.org/10.1007/s11042-023-17851-z
  • Trabelsi, Y., Shabat, O., Lanir, J., Maksimov, O., & Kraus, S. (2023). Advice provision in teleoperation of autonomous vehicles [Paper presentation]. International Conference on Intelligent User Interfaces, Proceedings IUI, pp. 750–761. https://doi.org/10.1145/3581641.3584068
  • Van Erp, J. B. F., & Padmos, P. (2003). Image parameters for driving with indirect viewing systems. Ergonomics, 46(15), 1471–1499. https://doi.org/10.1080/0014013032000121624
  • Wobbrock, J. O., Morris, M. R., & Wilson, A. D. (2009). User-defined gestures for surface computing [Paper presentation]. Conference on Human Factors in Computing Systems - Proceedings, pp. 1083–1092. https://doi.org/10.1145/1518701.1518866
  • Zhang, T. (2020). Toward automated vehicle teleoperation: Vision, opportunities, and challenges. IEEE Internet of Things Journal, 7(12), 11347–11354. https://doi.org/10.1109/JIOT.2020.3028766