91
Views
0
CrossRef citations to date
0
Altmetric
Research Article

Towards Better Utilization of Haptic Interaction in Visualization: Design Space and Knob Prototype

ORCID Icon, ORCID Icon, , , &
Received 07 Feb 2024, Accepted 20 May 2024, Published online: 09 Jun 2024

References

  • Abbasimoshaei, A., Chinnakkonda Ravi, A. K., & Kern, T. A. (2023). Development of a new control system for a rehabilitation robot using electrical impedance tomography and artificial intelligence. Biomimetics, 8(5), 420. https://doi.org/10.3390/biomimetics8050420
  • Apple Inc (2023). Apple watch.
  • Aranovskiy, S., Ushirobira, R., Efimov, D., & Casiez, G. (2016). Modeling pointing tasks in mouse-based human-computer interactions [Paper presentation]. Proceedings of IEEE Conference on Decision and Control, (pp. 6595–6600).
  • Barnard, G. A. (1947). Significance tests for 2 × 2 tables. Biometrika, 34(1/2), 123–138. https://doi.org/10.2307/2332517
  • Bäuerle, A., van Onzenoodt, C., der Kinderen, S., Westberg, J. J., Jönsson, D., & Ropinski, T. (2022). Where did my lines go? Visualizing missing data in parallel coordinates. Computer Graphics Forum, 41(3), 235–246. https://doi.org/10.1111/cgf.14536
  • Baumann, K. (2001). User interface design of electronic appliances. CRC Press.
  • Bianchi, A., Oakley, I., Lee, J. K., & Kwon, D. S. (2010). The haptic wheel: Design & evaluation of a tactile password system [Paper presentation]. Proceedings of Extended Abstracts on Human Factors in Computing Systems, (pp. 3625–3630).
  • Blumenschein, M., Zhang, X., Pomerenke, D., Keim, D. A., & Fuchs, J. (2020). Evaluating reordering strategies for cluster identification in parallel coordinates. Computer Graphics Forum, 39(3), 537–549. https://doi.org/10.1111/cgf.14000
  • Bok, J., Kim, B., & Seo, J. (2020). Augmenting parallel coordinates plots with color-coded stacked histograms. IEEE Transactions on Visualization and Computer Graphics, 28(7), 2563–2576. https://doi.org/10.1109/TVCG.2020.3038446
  • Breitschaft, S. J., Heijboer, S., Shor, D., Tempelman, E., Vink, P., & Carbon, C.-C. (2022). The haptic fidelity framework: A qualitative overview and categorization of cutaneous-based haptic technologies through fidelity. IEEE Transactions on Haptics, 15(2), 232–245. https://doi.org/10.1109/TOH.2022.3152378
  • Brodlie, K. W., Carpenter, L. A., Earnshaw, R. A., Gallop, J. R., Hubbold, R. J., Mumford, A. M., Osland, C. D., & Quarendon, P. (2012). Scientific visualization: Techniques and applications.
  • Brooke, J. (1996). SUS-A quick and dirty usability scale. Usability evaluation in industry, 189(194), 4–7.
  • Brooks, F. P., Ouh-Young, M., Batter, J. J., & Jerome Kilpatrick, P. (1990). Project GROPEHaptic displays for scientific visualization. ACM SIGGRAPH Computer Graphics, 24(4), 177–185. https://doi.org/10.1145/97880.97899
  • Bu, C., Zhang, Q., Wang, Q., Zhang, J., Sedlmair, M., Deussen, O., & Wang, Y. (2020). Sinestream: Improving the readability of streamgraphs by minimizing sine illusion effects. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1634–1643. https://doi.org/10.1109/TVCG.2020.3030404
  • Chen, Q., Cao, S., Wang, J., & Cao, N. (2023). How does automation shape the process of narrative visualization: A survey of tools. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2023.3261320
  • Chen, K.-T., Dwyer, T., Bach, B., & Marriott, K. (2021). Rotate or wrap? Interactive visualisations of cyclical data on cylindrical or toroidal topologies. IEEE Transactions on Visualization and Computer Graphics, 28(1), 727–736. https://doi.org/10.1109/TVCG.2021.3114693
  • Chen, X., Ge, T., Zhang, J., Chen, B., Fu, C.-W., Deussen, O., & Wang, Y. (2019). A recursive subdivision technique for sampling multi-class scatterplots. IEEE Transactions on Visualization and Computer Graphics, 26(1), 729–738. https://doi.org/10.1109/TVCG.2019.2934541
  • Chen, X., Zhang, J., Fu, C.-W., Fekete, J.-D., & Wang, Y. (2021). Pyramid-based scatterplots sampling for progressive and streaming data visualization. IEEE Transactions on Visualization and Computer Graphics, 28(1), 593–603. https://doi.org/10.1109/TVCG.2021.3114880
  • Cho, M., Kim, B., Bae, H.-J., & Seo, J. (2014). Stroscope: Multi-scale visualization of irregularly measured time-series data. IEEE Transactions on Visualization and Computer Graphics, 20(5), 808–821. https://doi.org/10.1109/TVCG.2013.2297933
  • Cleveland, W. S., & McGill, R. (1984). Graphical perception: Theory, experimentation, and application to the development of graphical methods. Journal of the American Statistical Association, 79(387), 531–554. https://doi.org/10.2307/2288400
  • Cleveland, W. S., & McGill, R. (1986). An experiment in graphical perception. International Journal of Man-Machine Studies, 25(5), 491–500. https://doi.org/10.1016/S0020-7373(86)80019-0
  • Cui, W., Strazdins, G., & Wang, H. (2019). Confluent-drawing parallel coordinates: Web-based interactive visual analytics of large multi-dimensional data. arXiv:1906.10017.
  • Cui, W., Strazdins, G., & Wang, H. (2023). Visual analysis of multidimensional big data: A scalable lightweight bundling method for parallel coordinates. IEEE Transactions on Big Data, 9(1), 106–117. https://doi.org/10.1109/TBDATA.2021.3123982
  • Dennerlein, J. T., Martin, D. B., & Hasser, C. (2000). Force-feedback improves performance for steering and combined steering-targeting tasks [Paper presentation]. Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, (pp. 423–429). https://doi.org/10.1145/332040.332469
  • Dutta, S., Chen, C.-M., Heinlein, G., Shen, H.-W., & Chen, J.-P. (2016). In situ distribution guided analysis and visualization of transonic jet engine simulations. IEEE Transactions on Visualization and Computer Graphics, 23(1), 811–820. https://doi.org/10.1109/TVCG.2016.2598604
  • Engel, C., & Weber, G. (2017). Analysis of tactile chart design [Paper presentation]. Proceedings of the International Conference on PErvasive Technologies Related to Assistive Environments, (pp. 197–200). https://doi.org/10.1145/3056540.3064955
  • Feng, F., & Stockman, T. (2019). Augmented visuotactile feedback support sensorimotor synchronization skill for rehabilitation [Paper presentation]. Proceedings of Extended Abstracts of the CHI Conference on Human Factors in Computing Systems. (pp. 1–6). https://doi.org/10.1145/3290607.3312812
  • Few, S. (2004). Show me the numbers. Analytics Press.
  • Fritz, J. P., & Barner, K. E. (1999). Design of a haptic data visualization system for people with visual impairments. IEEE Transactions on Rehabilitation Engineering, 7(3), 372–384. https://doi.org/10.1109/86.788473
  • Gellert, E., Petersen, D., & Böhmer, M. (2022). Multiknob: A knob for multiplexing rotation inputs by multitouch-based grasp recognition [Paper presentation]. Proceedings of Mensch Und Computer, (pp. 483–487).
  • Gong, J., Huang, D.-Y., Seyed, T., Lin, T., Hou, T., Liu, X., Yang, M., Yang, B., Zhang, Y., Yang, X.-D. (2018). Jetto: Using lateral force feedback for smartwatch interactions. Proceedings of the CHI Conference on Human Factors in Computing Systems, (pp. 1–14).
  • Guerreiro, J., Kim, Y., Nogueira, R., Chung, S., Rodrigues, A., & Oh, U. (2023). The design space of the auditory representation of objects and their behaviours in virtual reality for blind people. IEEE Transactions on Visualization and Computer Graphics, 29(5), 2763–2773. https://doi.org/10.1109/TVCG.2023.3247094
  • Heimerl, F., Han, Q., Koch, S., & Ertl, T. (2015). CiteRivers: Visual analytics of citation patterns. IEEE Transactions on Visualization and Computer Graphics, 22(1), 190–199. https://doi.org/10.1109/TVCG.2015.2467621
  • Hlawatsch, M., Sadlo, F., Burch, M., & Weiskopf, D. (2013). “Scale-stack bar charts,” in. Computer Graphics Forum, 32(3pt2), 181–190. https://doi.org/10.1111/cgf.12105
  • Hogan, T., & Hornecker, E. (2016). Towards a design space for multisensory data representation. Interacting with Computers, 29(2), 147–167. https://doi.org/10.1093/iwc/iww015
  • Inselberg, A. (1985). The plane with parallel coordinates. The Visual Computer, 1(2), 69–91. https://doi.org/10.1007/BF01898350
  • Ipakchian Askari, S., Haans, A., & IJsselsteijn, W. A. (2019). Is seeing believing? The effect of morphological congruent visual feedback on mediated touch experience [Paper presentation]. Proceedings of Extended Abstracts of the CHI Conference on Human Factors in Computing Systems, (pp. 1–6).
  • Javed, W., McDonnel, B., & Elmqvist, N. (2010). Graphical perception of multiple time series. IEEE Transactions on Visualization and Computer Graphics, 16(6), 927–934. https://doi.org/10.1109/TVCG.2010.162
  • Johansson, S., & Johansson, J. (2009). Interactive dimensionality reduction through user-defined combinations of quality metrics. IEEE Transactions on Visualization and Computer Graphics, 15(6), 993–1000. https://doi.org/10.1109/TVCG.2009.153
  • Johansson, A. J., Linde, J. (1999). Using simple force feedback mechanisms as haptic visualization tools. Proceedings of the IEEE Instrumentation and Measurement Technology Conference, (pp. 820–824).
  • Karduni, A., Wesslen, R., & Cho, I. (2020). Du bois wrapped bar chart: Visualizing categorical data with disproportionate values [Paper presentation]. Proceedings of the CHI Conference on Human Factors in Computing Systems, (pp. 1–12). https://doi.org/10.1145/3313831.3376365
  • Kim, L., Park, W., Cho, H., & Park, S. (2010). An universal remote controller with haptic interface for home devices [Paper presentation] Proceedings of Digest of Technical Papers International Conference on Consumer Electronics, pp. 209–210.
  • Kirkegaard, M., Bredholt, M., Frisson, C., & Wanderley, M. (2020). TorqueTuner: A self contained module for designing rotary haptic force feedback for digital musical instruments [Paper presentation]. Proceedings of the International Conference on New Interfaces for Musical Expression, pp. 273–278.
  • Kosara, R. (2019). Evidence for area as the primary visual cue in pie charts [Paper presentation]. Proceedings of IEEE Visualization Conference, (pp. 101–105).
  • Kraus, M., Angerbauer, K., Buchmüller, J., Schweitzer, D., Keim, D. A., Sedlmair, M., & Fuchs, J. (2020). Assessing 2D and 3D heatmaps for comparative analysis: An empirical study [Paper presentation]. Proceedings of the CHI Conference on Human Factors in Computing Systems, (pp. 1–14).
  • Kruijff, E., Marquardt, A., Trepkowski, C., Lindeman, R. W., Hinkenjann, A., Maiero, J., Riecke, B. E. (2016). On your feet! Enhancing vection in leaning-based interfaces through multisensory stimuli. Proceedings of the Symposium on Spatial User Interaction, (pp. 149–158).
  • Kühner, M., Wild, J., Bubb, H., Bengler, K., & Schneider, J. (2011). Haptic perception of viscous friction of rotary switches [Paper presentation]. Proceedings of IEEE World Haptics Conference, (pp. 587–591).
  • Lan, X., Shi, Y., Wu, Y., Jiao, X., & Cao, N. (2021). Kineticharts: Augmenting affective expressiveness of charts in data stories with animation design. IEEE Transactions on Visualization and Computer Graphics, 28(1), 933–943. https://doi.org/10.1109/TVCG.2021.3114775
  • Lee, B., Riche, N. H., Karlson, A. K., & Carpendale, S. (2010). Sparkclouds: Visualizing trends in tag clouds. IEEE Transactions on Visualization and Computer Graphics, 16(6), 1182–1189. https://doi.org/10.1109/TVCG.2010.194
  • Lee, B., Cordeil, M., Prouzeau, A., Jenny, B., & Dwyer, T. (2022). A design space for data visualisation transformations between 2D and 3D in mixed-reality environments [Paper presentation]. Proceedings of the CHI Conference on Human Factors in Computing Systems, (pp. 1–14). https://doi.org/10.1145/3491102.3501859
  • Li, Z., Wang, T., Wang, M., & Zhang, J. (2022). Construct boundaries and place labels for multi-class scatterplots. Journal of Visualization, 25(2), 407. https://doi.org/10.1007/s12650-021-00791-x
  • Liao, Y.-C., Todi, K., Acharya, A., Keurulainen, A., Howes, A., & Oulasvirta, A. (2022). Rediscovering affordance: A reinforcement learning perspective [Paper presentation]. Proceedings of the CHI Conference on Human Factors in Computing Systems, (pp. 1–15). https://doi.org/10.1145/3491102.3501992
  • Loftin, R. B. (2003). Multisensory perception: Beyond the visual in visualization. Computing in Science & Engineering, 5(4), 56–58. https://doi.org/10.1109/MCISE.2003.1208644
  • Lu, M., Fish, N., Wang, S., Lanir, J., Cohen-Or, D., & Huang, H. (2020). Enhancing static charts with data-driven animations. IEEE Transactions on Visualization and Computer Graphics, 28(7), 2628–2640. https://doi.org/10.1109/TVCG.2020.3037300
  • Lu, M., Lanir, J., Wang, C., Yao, Y., Zhang, W., Deussen, O., & Huang, H. (2021). Modeling just noticeable differences in charts. IEEE Transactions on Visualization and Computer Graphics, 28(1), 718–726. https://doi.org/10.1109/TVCG.2021.3114874
  • Lundin, K., Cooper, M., Persson, A., Evestedt, D., & Ynnerman, A. (2007). Enabling design and interactive selection of haptic modes. Virtual Reality, 11(1), 1–13. https://doi.org/10.1007/s10055-006-0033-7
  • MacLean, A., Young, R. M., Bellotti, V. M., & Moran, T. P. (1991). Questions, options, and criteria: Elements of design space analysis. Human-Computer Interaction, 6(3), 201–250. https://doi.org/10.1207/s15327051hci0603&4_2
  • Matejka, J., Anderson, F., & Fitzmaurice, G. (2015). Dynamic opacity optimization for scatter plots [Paper presentation]. Proceedings of the Annual ACM Conference on Human Factors in Computing Systems, (pp. 2707–2710). https://doi.org/10.1145/2702123.2702585
  • Mayorga, A., & Gleicher, M. (2013). Splatterplots: Overcoming overdraw in scatter plots. IEEE Transactions on Visualization and Computer Graphics, 19(9), 1526–1538. https://doi.org/10.1109/TVCG.2013.65
  • McKerlie, D., & MacLean, A. (1994). Reasoning with design rationale: Practical experience with design space analysis. Design Studies, 15(2), 214–226. https://doi.org/10.1016/0142-694X(94)90026-4
  • Michelitsch, G., Williams, J., Osen, M., Jimenez, B., & Rapp, S. (2004). Haptic chameleon: A new concept of shape-changing user interface controls with force feedback [Paper presentation]. Proceedings of CHI Extended Abstracts on Human Factors in Computing Systems, (pp. 1305–1308).
  • Moritz, D., & Fisher, D. (1808). Visualizing a million time series with the density line chart. arXiv06019 2018.
  • Moritz, D., Padilla, L. M., Nguyen, F., & Franconeri, S. L. (2023). Average estimates in line graphs are biased toward areas of higher variability. IEEE Transactions on Visualization and Computer Graphics, 30(1), 306–315. https://doi.org/10.1109/TVCG.2023.3326589
  • Mumtaz, H., van Garderen, M., Beck, F., Weiskopf, D. (2019). Label placement for outliers in scatterplots. Proceedings of EuroVis, (pp. 1–5).
  • Nguyen, B. D., Hewett, R., Dang, T. (2021). NetScatter: Visual analytics of multivariate time series with a hybrid of dynamic and static variable relationships. Proceedings of IEEE Pacific Visualization Symposium (pp. 52–60).
  • Nguyen, H., & Rosen, P. (2017). DSPCP: A data scalable approach for identifying relationships in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 24(3), 1301–1315. https://doi.org/10.1109/TVCG.2017.2661309
  • Okoe, M., Jianu, R., & Kobourov, S. (2018). Node-link or adjacency matrices: Old question, new insights. IEEE Transactions on Visualization and Computer Graphics, 25(10), 2940–2952. https://doi.org/10.1109/TVCG.2018.2865940
  • Ouhyoung, M., Tsai, W.-N., Tsai, M.-C., Wu, J.-R., Huang, C.-H., & Yang, T.-J. (1995). A low-cost force feedback joystick and its use in PC video games. IEEE Transactions on Consumer Electronics, 41(3), 787–794. https://doi.org/10.1109/30.468083
  • Palomo, C., Guo, Z., Silva, C. T., & Freire, J. (2015). Visually exploring transportation schedules. IEEE Transactions on Visualization and Computer Graphics, 22(1), 170–179. https://doi.org/10.1109/TVCG.2015.2467592
  • Pan, J., Chen, W., Zhao, X., Zhou, S., Zeng, W., Zhu, M., Chen, J., Fu, S., & Wu, Y. (2020). Exemplar-based layout fine-tuning for node-link diagrams. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1655–1665. https://doi.org/10.1109/TVCG.2020.3030393
  • Paneels, S., & Roberts, J. C. (2010). Review of designs for haptic data visualization. IEEE Transactions on Haptics, 3(2), 119–137. https://doi.org/10.1109/TOH.2009.44
  • Patil, A., Richer, G., Jermaine, C., Moritz, D., & Fekete, J.-D. (2022). Studying early decision making with progressive bar charts. IEEE Transactions on Visualization and Computer Graphics, 29(1), 407–417. https://doi.org/10.1109/TVCG.2022.3209426
  • Patnaik, B., Batch, A., & Elmqvist, N. (2018). Information olfactation: Harnessing scent to convey data. IEEE Transactions on Visualization and Computer Graphics, 25(1), 726–736. https://doi.org/10.1109/TVCG.2018.2865237
  • Peebles, L., & Norris, B. (2003). Filling “gaps” in strength data for design. Applied Ergonomics, 34(1), 73–88. https://doi.org/10.1016/s0003-6870(02)00073-x
  • Peng, W., Ward, M. O., & Rundensteiner, E. A. (2004). Clutter reduction in multi-dimensional data visualization using dimension reordering [Paper presentation]. Proceedings of IEEE Symposium on Information Visualization, (pp. 89–96).
  • Perrot, A., Bourqui, R., Hanusse, N., Lalanne, F., Auber, D. (2015). Large interactive visualization of density functions on big data infrastructure. Proceedings of IEEE Symposium on Large Data Analysis and Visualization, (pp. 99–106).
  • Pham, V., Nguyen, N., & Dang, T. (2020). ContiMap: Continuous heatmap for large time series data [Paper presentation]. Proceedings of Visualization in Data Science (VDS), (pp. 42–51).
  • Pomerenke, D., Dennig, F. L., Keim, D. A., Fuchs, J., & Blumenschein, M. (2019). Slope-dependent rendering of parallel coordinates to reduce density distortion and ghost clusters [Paper presentation]. Proceedings of IEEE Visualization Conference, (pp. 86–90).
  • Quadri, G. J., & Rosen, P. (2020). Modeling the influence of visual density on cluster perception in scatterplots using topology. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1829–1839. https://doi.org/10.1109/TVCG.2020.3030365
  • Raidou, R. G., Groller, M. E., & Eisemann, M. (2019). Relaxing dense scatter plots with pixel-based mappings. IEEE Transactions on Visualization and Computer Graphics, 25(6), 2205–2216. https://doi.org/10.1109/TVCG.2019.2903956
  • Rapp, T., Peters, C., & Dachsbacher, C. (2019). Void-and-cluster sampling of large scattered data and trajectories. IEEE Transactions on Visualization and Computer Graphics, 26(1), 780–789. https://doi.org/10.1109/TVCG.2019.2934335
  • Rapp, T., Peters, C., & Dachsbacher, C. (2020). Visual analysis of large multivariate scattered data using clustering and probabilistic summaries. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1580–1590. https://doi.org/10.1109/TVCG.2020.3030379
  • Reimann, D., Schulz, A., Ram, N., & Gaschler, R. (2023). Color-encoded links improve homophily perception in node-link diagrams. IEEE Transactions on Visualization and Computer Graphics, 29(12), 5593–5598. https://doi.org/10.1109/TVCG.2022.3221014
  • Roberts, J. C. (2004). Visualization equivalence for multisensory perception: Learning from the visual. Computing in Science & Engineering, 6(3), 61–65. https://doi.org/10.1109/MCISE.2004.1289310
  • Saket, B., Simonetto, P., Kobourov, S., & Börner, K. (2014). Node, node-link, and node-link-group diagrams: An evaluation. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2231–2240. https://doi.org/10.1109/TVCG.2014.2346422
  • Shao, L., Mahajan, A., Schreck, T., & Lehmann, D. J. (2017). Interactive regression lens for exploring scatter plots. Computer Graphics Forum, 36(3), 157–166. https://doi.org/10.1111/cgf.13176
  • Sharp, E. D. (1962). Maximum torque exertable on knobs of various sizes and rim surfaces. Behavioral Sciences Laboratory, 6570th Aerospace Medical Research,
  • Skau, D., & Kosara, R. (2016). Arcs, angles, or areas: Lndividual data encodings in pie and donut charts. Computer Graphics Forum, 35(3), 121–130. https://doi.org/10.1111/cgf.12888
  • Swindells, C., MacLean, K. E., & Booth, K. S. (2009). Designing for feel: Contrasts between human and automated parametric capture of knob physics. IEEE Transactions on Haptics, 2(4), 200–211. https://doi.org/10.1109/TOH.2009.23
  • Swindells, C., Maksakov, E., MacLean, K. E., & Chung, V. (2006). The role of prototyping tools for haptic behavior design [Paper presentation]. 2006 14th Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems, IEEE, (pp. 161–168).
  • Talbot, J., Setlur, V., & Anand, A. (2014). Four experiments on the perception of bar charts. IEEE Transactions on Visualization and Computer Graphics, 20(12), 2152–2160. https://doi.org/10.1109/TVCG.2014.2346320
  • Tan, Y. H., Ng, P. K., Saptari, A., & Jee, K. S. (2015). Ergonomics aspects of knob designs: A literature review. Theoretical Issues in Ergonomics Science, 16(1), 86–98. https://doi.org/10.1080/1463922X.2014.880530
  • Tao, W., Hou, X., Sah, A., Battle, L., Chang, R., & Stonebraker, M. (2020). Kyrix-s: Authoring scalable scatterplot visualizations of big data. IEEE Transactions on Visualization and Computer Graphics, 27(2), 401–411. https://doi.org/10.1109/TVCG.2020.3030372
  • Taylor, R. M. (2000). Practical scientific visualization examples. ACM SIGGRAPH Computer Graphics, 34(1), 74–79. https://doi.org/10.1145/563788.604456
  • Trautner, T., Bolte, F., Stoppel, S., & Bruckner, S. (2020). Sunspot plots: Model-based structure enhancement for dense scatter plots. Computer Graphics Forum, 39(3), 551–563. https://doi.org/10.1111/cgf.14001
  • van Oosterhout, A., & Hoggan, E. (2020). Reshaping interaction with rotary knobs: Combining form, feel and function [Paper presentation]. Proceedings of the ACM Designing Interactive Systems Conference, (pp. 1973–1982).
  • Van Oosterhout, A., Hoggan, E., Rasmussen, M. K., & Bruns, M. (2019). DynaKnob: Combining haptic force feedback and shape change [Paper presentation]. Proceedings of the Designing Interactive Systems Conference, (pp. 963–974).
  • van Oosterhout, A., Rasmussen, M. K., Hoggan, E., & Bruns, M. (2018). Knobology 2.0: Giving shape to the haptic force feedback of interactive knobs [Paper presentation]. Proceedings of the Annual ACM Symposium on User Interface Software and Technology, (pp. 197–199).
  • Viégas, F. B., Wattenberg, M., & Feinberg, J. (2009). Participatory visualization with wordle. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1137–1144. https://doi.org/10.1109/TVCG.2009.171
  • Visschedijk, A., Kim, H., Tejada, C., & Ashbrook, D. (2022). Clipwidgets: 3d-printed modular tangible ui extensions for smartphones [Paper presentation]. Proceedings of Sixteenth International Conference on Tangible, Embedded, and Embodied Interaction, (pp. 1–11). https://doi.org/10.1145/3490149.3501314
  • Wall, E., Arcalgud, A., Gupta, K., & Jo, A. (2019). A markov model of users’ interactive behavior in scatterplots [Paper presentation]. Proceedings of IEEE Visualization Conference, (pp. 81–85).
  • Wall, S. A., & Brewster, S. A. (2003). Assessing haptic properties for data representation [Paper presentation]. Proceedings of Extended Abstracts on Human Factors in Computing Systems, (pp. 858–859).
  • Wang, J., Zhao, J., Guo, S., North, C., & Ramakrishnan, N. (2020). ReCloud: Semantics-based word cloud visualization of user reviews [Paper presentation]. Proceedings of Graphics Interface, (pp. 151–158).
  • Wang, Y., Chu, X., Bao, C., Zhu, L., Deussen, O., Chen, B., & Sedlmair, M. (2017). Edwordle: Consistency-preserving word cloud editing. IEEE Transactions on Visualization and Computer Graphics, 24(1), 647–656. https://doi.org/10.1109/TVCG.2017.2745859
  • Wang, Y., Chu, X., Zhang, K., Bao, C., Li, X., Zhang, J., Fu, C.-W., Hurter, C., Deussen, O., & Lee, B. (2019). Shapewordle: Tailoring wordles using shape-aware archimedean spirals. IEEE Transactions on Visualization and Computer Graphics, 26(1), 991–1000. https://doi.org/10.1109/TVCG.2019.2934783
  • Wang, Y., Han, F., Zhu, L., Deussen, O., & Chen, B. (2017). Line graph or scatter plot? Automatic selection of methods for visualizing trends in time series. IEEE Transactions on Visualization and Computer Graphics, 24(2), 1141–1154. https://doi.org/10.1109/TVCG.2017.2653106
  • Weidner, F., Maier, J. E., & Broll, W. (2023). Eating, smelling, and seeing: Investigating multisensory integration and (in)Congruent stimuli while eating in VR. IEEE Transactions on Visualization and Computer Graphics, 29(5), 2423–2433. https://doi.org/10.1109/TVCG.2023.3247099
  • Woodson, W. E., & Conover, D. W. (1964). Human engineering guide for rquipment designers.
  • Wu, W., Xu, J., Zeng, H., Zheng, Y., Qu, H., Ni, B., Yuan, M., & Ni, L. M. (2015). Telcovis: Visual exploration of co-occurrence in urban human mobility based on telco data. IEEE Transactions on Visualization and Computer Graphics, 22(1), 935–944. https://doi.org/10.1109/TVCG.2015.2467194
  • Xiong, C., Ceja, C. R., Ludwig, C. J., & Franconeri, S. (2019). Biased average position estimates in line and bar graphs: Underestimation, overestimation, and perceptual pull. IEEE Transactions on Visualization and Computer Graphics, 26(1), 301–310. https://doi.org/10.1109/TVCG.2019.2934400
  • Xiong, C., Setlur, V., Bach, B., Koh, E., Lin, K., & Franconeri, S. (2021). Visual arrangements of bar charts influence comparisons in viewer takeaways. IEEE Transactions on Visualization and Computer Graphics, 28(1), 955–965. https://doi.org/10.1109/TVCG.2021.3114823
  • Xue, Y., Paetzold, P., Kehlbeck, R., Chen, B., Kwan, K. C., Wang, Y., & Deussen, O. (2023). Reducing ambiguities in line-based density plots by image-space colorization. IEEE Transactions on Visualization and Computer Graphics, 30(1), 825–835. https://doi.org/10.1109/TVCG.2023.3327149
  • Yang, R., & Newman, M. W. (2012). Living with an intelligent thermostat: Advanced control for heating and cooling systems [Paper presentation]. Proceedings of the 2012 ACM Conference on Ubiquitous Computing, (pp. 1102–1107).
  • Yang, Y., Cordeil, M., Beyer, J., Dwyer, T., Marriott, K., & Pfister, H. (2020). Embodied navigation in immersive abstract data visualization: Is Overview + detail or zooming better for 3D scatterplots? IEEE Transactions on Visualization and Computer Graphics, 27(2), 1214–1224. https://doi.org/10.1109/TVCG.2020.3030427
  • Yen, Y.-C. G., Kim, J. O., Bailey, B. P. (2020). Decipher: An interactive visualization tool for interpreting unstructured design feedback from multiple providers. Proceedings of the CHI Conference on Human Factors in Computing Systems, (pp. 1–13).
  • Yuan, J., Xiang, S., Xia, J., Yu, L., & Liu, S. (2020). Evaluation of sampling methods for scatterplots. IEEE Transactions on Visualization and Computer Graphics, 27(2), 1720–1730. https://doi.org/10.1109/TVCG.2020.3030432
  • Yuan, X., Guo, P., Xiao, H., Zhou, H., & Qu, H. (2009). Scattering points in parallel coordinates. IEEE Transactions on Visualization and Computer Graphics, 15(6), 1001–1008. https://doi.org/10.1109/TVCG.2009.179
  • Zhang, G., Zhu, Z., Zhu, S., Liang, R., & Sun, G. (2022). Towards a better understanding of the role of visualization in online learning: A review. Visual Informatics, 6(4), 22–33. https://doi.org/10.1016/j.visinf.2022.09.002
  • Zhou, H., Xu, P., Ming, Z., & Qu, H. (2014). Parallel coordinates with data labels [Paper presentation]. Proceedings of the International Symposium on Visual Information Communication and Interaction, (pp. 49–57). https://doi.org/10.1145/2636240.2636854
  • Zhou, L., & Weiskopf, D. (2017). Indexed-points parallel coordinates visualization of multivariate correlations. IEEE Transactions on Visualization and Computer Graphics, 24(6), 1997–2010. https://doi.org/10.1109/TVCG.2017.2698041
  • Zinsmaier, M., Brandes, U., Deussen, O., & Strobelt, H. (2012). Interactive level-of-detail rendering of large graphs. IEEE Transactions on Visualization and Computer Graphics, 18(12), 2486–2495. https://doi.org/10.1109/TVCG.2012.238

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.