2,469
Views
46
CrossRef citations to date
0
Altmetric
Articles

Prediction of students’ early dropout based on their interaction logs in online learning environment

ORCID Icon, ORCID Icon & ORCID Icon
Pages 1414-1433 | Received 06 Nov 2019, Accepted 05 Feb 2020, Published online: 19 Feb 2020

References

  • Baker, R. S., Lindrum, D., Lindrum, M. J., & Perkowski, D. (2015). Analyzing early at-risk factors in higher education E-learning courses. International Educational Data Mining Society.
  • Bengio, Y., & Frasconi, P. (1995). An input output HMM architecture. Advances in Neural Information Processing Systems, 427–434. http://scholar.googleusercontent.com/scholar?q=cache:EnsGOF3acxIJ:scholar
  • Black, E. W., Dawson, K., & Priem, J. (2008). Data for free: Using LMS activity logs to measure community in online courses. The Internet and Higher Education, 11(2), 65–70.
  • Cambruzzi, W. L., Rigo, S. J., & Barbosa, J. L. V. (2015). Dropout prediction and reduction in distance education courses with the learning analytics multitrail approach. Journal of Universal Computer Science, 21(1), 23–47.
  • Castro, F., Vellido, A., Nebot, À, & Mugica, F. (2007). Applying data mining techniques to e-learning problems. In Evolution of teaching and learning paradigms in intelligent environment (pp. 183–221). Berlin, Heidelberg: Springer.
  • Chui, K. T., Fung, D. C. L., Lytras, M. D., & Lam, T. M. (2018). Predicting at-risk university students in a virtual learning environment via a machine learning algorithm. Computers in Human Behavior, 13(1), 63–75. https://doi.org/10.1177/1469787411429184
  • Clow, D. (2013). An overview of learning analytics. Teaching in Higher Education, 18(6), 683–695.
  • Doherty, W. (2006). An analysis of multiple factors affecting retention in web-based community college courses. The Internet and Higher Education, 9(4), 245–255.
  • Faucon, L., Kidzinski, L., & Dillenbourg, P. (2016). Semi-Markov model for simulating MOOC students. Proceedings of the 9th international conference on educational data mining. (EPFL-CONF-218881).
  • Fei, M., & Yeung, D.-Y. (2015). Temporal models for predicting student dropout in massive open online courses. Data mining workshop (ICDMW), 2015 IEEE international conference on. pp. 256–263.
  • Graves, A. (2012). Supervised sequence labelling with recurrent neural networks. 2012. Retrieved from http://books.google.com/books
  • Hanley, J. A., & McNeil, B. J. (1982). The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology, 143(1), 29–36.
  • He, J., Bailey, J., Rubinstein, B. I. P., & Zhang, R. (2015). Identifying at-risk students in massive open online courses (pp. 1749–1755). Austin Texas, USA: AAAI.
  • Heuer, H., & Breiter, A. (2018). Student success prediction and the trade-off between big data and data minimization. DeLFI 2018-Die 16. E-Learning Fachtagung Informatik.
  • Huberth, M., Chen, P., Tritz, J., & McKay, T. A. (2015). Computer-tailored student support in introductory physics. PloS One, 10(9). e0137001. https://journals.plos.org/plosone/article?id=10.
  • Ifenthaler, D., & Schumacher, C. (2019). Releasing personal information within learning analytics systems. In Sampson, Demetrios and Spector, J. Michael and Ifenthaler, & Dirk and Isa (Eds.), Learning technologies for transforming large-scale teaching, learning, and assessment (pp. 3–18). Springer. Cham. https://doi.org/10.1007/978-3-030-15130-0_1
  • Jayaprakash, S. M., Moody, E. W., Lauría, E. J. M., Regan, J. R., & Baron, J. D. (2014). Early alert of academically at-risk students: An open source analytics initiative. Journal of Learning Analytics, 1(1), 6–47.
  • Kloft, M., Stiehler, F., Zheng, Z., & Pinkwart, N. (2014). Predicting MOOC dropout over weeks using machine learning methods. Proceedings of the EMNLP 2014 workshop on analysis of large scale social interaction in MOOCs. pp. 60–65.
  • Kostopoulos, G., Kotsiantis, S., Pierrakeas, C., Koutsonikos, G., & Gravvanis, G. A. (2018). Forecasting students’ success in an open university. International Journal of Learning Technology, 13(1), 26–43.
  • Kotsiantis, S. B., Pierrakeas, C. J., & Pintelas, P. E. (2003). Preventing student dropout in distance learning using machine learning techniques. International conference on knowledge-based and intelligent information and engineering systems. pp. 267–274.
  • Kuzilek, J., Hlosta, M., Herrmannova, D., Zdrahal, Z., & Wolff, A. (2015). OU analyse: Analysing at-risk students at the open university. Learning Analytics Review, 1–16. http://oro.open.ac.uk/42529/
  • Liao, S. N., Zingaro, D., Thai, K., Alvarado, C., Griswold, W. G., & Porter, L. (2019). A robust machine learning technique to predict low-performing students. ACM Transactions on Computing Education (TOCE), 19(3), 18.
  • Lonn, S., Aguilar, S., & Behavior, S. T.-C. in H., & 2015, undefined. (n.d.). Investigating student motivation in the context of a learning analytics intervention during a summer bridge program. Elsevier. Retrieved from https://www.sciencedirect.com/science/article/pii/S0747563214003793
  • Lu, O. H. T., Huang, J. C. H., Huang, A. Y. Q., & Yang, S. J. H. (2017). Applying learning analytics for improving students engagement and learning outcomes in an MOOCs enabled collaborative programming course. Interactive Learning Environments, 25(2), 220–234. doi: 10.1080/10494820.2016.1278391
  • Lykourentzou, I., Giannoukos, I., Nikolopoulos, V., Mpardis, G., & Loumos, V. (2009). Dropout prediction in e-learning courses through the combination of machine learning techniques. Computers & Education, 53(3), 950–965.
  • Lytras, M., Raghavan, V., & Damiani, E. (2017). Big data and data analytics research: From metaphors to value space for collective wisdom in human decision making and smart machines. International Journal on Semantic Web and Information Systems, 13, 1–10. doi: 10.4018/IJSWIS.2017010101
  • Marbouti, F., Diefes-Dux, H. A., & Madhavan, K. (2016). Models for early prediction of at-risk students in a course using standards-based grading. Computers & Education, 103, 1–15.
  • Moon, T. K. (1996). The expectation-maximization algorithm. IEEE Signal Processing Magazine, 13(6), 47–60.
  • Nichols, A. J., & Levy, Y. (2009). Empirical assessment of college student-athletes’ persistence in e-learning courses: A case study of a US National Association of Intercollegiate Athletics (NAIA) institution. The Internet and Higher Education, 12(1), 14–25.
  • Niculescu-Mizil, A., & Caruana, R. (n.d.). Obtaining calibrated probabilities from boosting *. Retrieved from www.aaai.org
  • Olson, D. L., & Delen, D. (2008). Advanced data mining techniques. Berlin: Springer Science & Business Media.
  • Papamitsiou, Z., & Economides, A. A. (2014). Learning analytics and educational data mining in practice: A systematic literature review of empirical evidence. Journal of Educational Technology & Society, 17(4), 49–64.
  • Perry, J. W., Kent, A., & Berry, M. M. (1955). Machine literature searching x. Machine language; factors underlying its design and development. American Documentation, 6(4), 242–254.
  • Preidys, S., & Sakalauskas, L. (2010). Analysis of students’ study activities in virtual learning environments using data mining methods. Technological and Economic Development of Economy, 16(1), 94–108.
  • Prieto, L. P., Rodríguez-Triana, M. J., Kusmin, M., & Laanpere, M. (2017). Smart school multimodal dataset and challenges. Retrieved from CEUR workshop proceedings website: https://scholar.google.com.ly/scholar?hl=en&as_sdt=0%2C5&q=Smart+school+multimodal+dataset+and+challenges&btnG=
  • Ramesh, A., Goldwasser, D., Huang, B., Daumé, H. III, & Getoor, L. (2013). Modeling learner engagement in MOOCs using probabilistic soft logic. NIPS Workshop on Data Driven Education, 21, 62.
  • Ramesh, A., Goldwasser, D., Huang, B., Daume, H. III, & Getoor, L. (2014). Learning latent engagement patterns of students in online courses. Twenty-eighth AAAI conference on artificial intelligence.
  • Ran, J., Zhang, G., Zheng, T., & Wang, W. (2018). Logistic regression analysis on learning behavior and learning effect based on SPOC data. 2018 13th International Conference on Computer Science & education (ICCSE). pp. 1–5.
  • Romero-Zaldivar, V.-A., Pardo, A., Burgos, D., & Kloos, C. D. (2012). Monitoring student progress using virtual appliances: A case study. Computers & Education, 58(4), 1058–1067.
  • Romero, C., & Ventura, S. (2010). Educational data mining: A review of the state of the art. IEEE Transactions on Systems, Man, and Cybernetics, Part C (Applications and Reviews), 40(6), 601–618.
  • Simpson, O. (2018). Supporting students in online, open and distance learning (1st ed.). London: Routledge. https://doi.org/10.4324/9780203062395
  • Skrbinjek, V., & Dermol, V. (2019). Predicting students’ satisfaction using a decision tree. Tertiary Education and Management, 25(2), 101–113. https://doi.org/10.1007/s11233-018-09018-5
  • Tan, M., & Shao, P. (2015). Prediction of student dropout in e-learning program through the use of machine learning method. International Journal of Emerging Technologies in Learning (IJET), 10(1), 11–17.
  • Taylor, C., Veeramachaneni, K., & O’Reilly, U.-M. (2014). Likely to stop? Predicting stopout in massive open online courses. ArXiv Preprint ArXiv:1408.3382.
  • Verikas, A., Gelzinis, A., & Bacauskiene, M. (2011). Mining data with random forests: A survey and results of new tests. Pattern Recognition, 44(2), 330–349.
  • Wei, W. W. S. (2006). Time series analysis. In The Oxford handbook of quantitative methods in psychology: Vol. 2.
  • Willems, J. C. (1986). From time series to linear system–Part I. Finite dimensional linear time invariant systems. Automatica, 22(5), 561–580.
  • Willging, P. A., & Willging, P. A. (2014). Factors that influence students ‘ decision to dropout of online courses (May).
  • Wright, R. E. (1995). Logistic regression.
  • Wu, X., Kumar, V., Quinlan, J. R., Ghosh, J., Yang, Q., Motoda, H., … Steinberg, D. (2008). Top 10 algorithms in data mining. Knowledge and Information Systems, 14(1), 1–37.
  • You, J. W. (2016). Identifying significant indicators using LMS data to predict course achievement in online learning. The Internet and Higher Education, 29, 23–30.
  • Zhang, G., Anderson, T. J., Ohland, M. W., & Thorndyke, B. R. (2004). Identifying factors influencing engineering student graduation: A longitudinal and cross-institutional study. Journal of Engineering Education, 93(4), 313–320.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.