328
Views
5
CrossRef citations to date
0
Altmetric
Articles

Examining the key drivers of student acceptance of online labs

ORCID Icon, & ORCID Icon
Pages 1460-1475 | Received 17 Jan 2022, Accepted 30 Aug 2022, Published online: 23 Sep 2022

References

  • Abdullah, F., & Ward, R. (2016). Developing a General Extended Technology Acceptance Model for E-Learning (GETAMEL) by analysing commonly used external factors. Computers In Human Behavior, 56, 238–256. https://doi.org/10.1016/j.chb.2015.11.036
  • Ajzen, I. (1991). The theory of planned behavior. Organizational Behavior and Human Decision Processes, 50(2), 179–211. https://doi.org/10.1016/0749-5978(91)90020-T
  • Ali, N., & Ullah, S. (2020). Review to analyze and compare virtual chemistry laboratories for their use in education. Journal of Chemical Education, 97(10), 3563–3574. https://doi.org/10.1021/acs.jchemed.0c00185
  • Alkhaldi, T., Pranata, I., & Athauda, R. I. (2016). A review of contemporary virtual and remote laboratory implementations: Observations and findings. Journal of Computers in Education, 3(3), 329–351. https://doi.org/10.1007/s40692-016-0068-z
  • Al-Nuaimi, M., & Al-Emran, M. (2021). Learning management systems and technology acceptance models: A systematic review. Education And Information Technologies, 26(5), 5499–5533. https://doi.org/10.1007/s10639-021-10513-3
  • Appleton, K. (1997). Analysis and description of students’ learning during science classes using a constructivist-based model. Journal of Research in Science Teaching, 34(3), 303–318. https://doi.org/10.1002/(SICI)1098-2736(199703)34:3<303::AID-TEA6>3.0.CO;2-W
  • Bazelais, P., Doleck, T., & Lemay, D. J. (2018). Investigating the predictive power of TAM: A case study of CEGEP students’ intentions to use online learning technologies. Education and Information Technologies, 23(1), 93–111. https://doi.org/10.1007/s10639-017-9587-0
  • Bazelais, P., Lemay, D. J., & Doleck, T. (2016). How does grit impact students’ academic achievement in science? European Journal of Science and Mathematics Education, 4(1), 33–43. https://doi.org/10.30935/scimath/9451
  • Bhute, V. J., Inguva, P., Shah, U., & Brechtelsbauer, C. (2021). Transforming traditional teaching laboratories for effective remote delivery—A review. Education for Chemical Engineers, 35, 96–104. https://doi.org/10.1016/j.ece.2021.01.008
  • Biel Solé, D., Vento Maldonado, J., & Costa Castelló, R. (2010). On the role of virtual laboratories in an undergraduate power electronics introductory course. https://upcommons.upc.edu/bitstream/handle/2117/7048/IOC-DT-P-2010-02-1.pdf
  • Bower, M., DeWitt, D., & Lai, J. (2020). Reasons associated with preservice teachers’ intention to use immersive virtual reality in education. British Journal of Educational Technology, 51(6), 2215–2233. https://doi.org/10.1111/bjet.13009
  • Bretz, S. L. (2019). Evidence for the importance of laboratory courses. Journal of Chemical Education, 96(2), 193–195. https://doi.org/10.1021/acs.jchemed.8b00874
  • Brinson, J. R. (2015). Learning outcome achievement in non-traditional (virtual and remote) versus traditional (hands-on) laboratories: A review of the empirical research. Computers and Education, 87, 218–237. https://doi.org/10.1016/j.compedu.2015.07.003
  • Castro, M., & Tumibay, G. (2019). A literature review: Efficacy of online learning courses for higher education institution using meta-analysis. Education And Information Technologies, 26(2), 1367–1385. https://doi.org/10.1007/s10639-019-10027-z
  • Chan, P., Van Gerven, T., Dubois, J., & Bernaerts, K. (2021). Virtual chemical laboratories: A systematic literature review of research, technologies and instructional design. Computers and Education Open, 2, 100053. https://doi.org/10.1016/j.caeo.2021.100053
  • Çivril, H., & Özkul, A. E. (2021). Investigation of the factors affecting open and distance education learners’ intentions to use a virtual laboratory. International Review of Research in Open and Distance Learning, 22(2), 143–165. https://doi.org/10.19173/irrodl.v22i2.5076
  • Clark, R. E. (1994). Media will never influence learning. Educational Technology Research and Development, 42(2), 21–29. https://doi.org/10.1007/BF02299088
  • Cohen, J. (1988). Statistical power analysis for the behavioral sciences (2nd ed.). Hillsdale, NJ: Lawrence Erlbaum Associates.
  • Cooper, M. (2005). Remote laboratories in teaching and learning – issues impinging on widespread adoption in science and engineering education. International Journal of Online Engineering, 1(1), 1–7. https://doi.org/10.3991/ijoe.v1i1.298
  • Davenport, J. L., Rafferty, A. N., & Yaron, D. J. (2018). Whether and how authentic contexts using a virtual chemistry Lab support learning. Journal of Chemical Education, 95(8), 1250–1259. https://doi.org/10.1021/acs.jchemed.8b00048
  • Davi, N., Pringle, P., Fiondella, F., Lockwood, J., & Oelkers, R. (2021). Online labs to introduce undergraduate students to scientific concepts and practices in tree-ring research. Journal Of Geoscience Education 70(1), 73–84. https://doi.org/10.1080/10899995.2021.1927567.
  • Davis, F. D. (1989). Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS Quarterly, 13(3), 319–340. https://doi.org/10.2307/249008
  • Dečman, M. (2015). Modeling the acceptance of e-learning in mandatory environments of higher education: The influence of previous education and gender. Computers in Human Behavior, 49, 272–281. https://doi.org/10.1016/j.chb.2015.03.022
  • Dede, C. J., Salzman, M., & Loftin, R. B. (2005). The development of a virtual world for learning Newtonian mechanics. In P. Brusilovsky, P. Kommers, & N. Streitz (Eds.), Multimedia, hypermedia, and virtual reality models, systems, and applications (pp. 87–106). Springer. https://doi.org/10.1007/3-540-61282-3_10.
  • de Jong, T., Sotiriou, S., & Gillet, D. (2014). Innovations in STEM education: The Go-Lab Federation of online labs. Smart Learning Environments, 1(3), 1–16. https://doi.org/10.1186/s40561-014-0003-6
  • Delgado, T., Bhark, S., & Donahue, J. (2020). Pandemic teaching: Creating and teaching cell biology labs online during COVID-19. Biochemistry And Molecular Biology Education, 49(1), 32–37. https://doi.org/10.1002/bmb.21482
  • Doleck, T., Bazelais, P., & Lemay, D. J. (2018). The role of behavioral expectations in technology acceptance: A CEGEP case study. Journal of Computing in Higher Education, 30(3), 407–425. https://doi.org/10.1007/s12528-017-9158-9
  • Doleck, Tenzin, Bazelais, Paul, & Lemay, David John. (2017). Examining CEGEP students’ acceptance of computer-based learning environments: A test of two models. Education and Information Technologies, 22(5), 2523–2543. http://doi.org/10.1007/s10639-016-9559-9
  • Doubleday, E. G., O'Loughlin, V. D., & Doubleday, A. F. (2011). The virtual anatomy laboratory: Usability testing to improve an online learning resource for anatomy education. Anatomical Sciences Education, 4(6), 318–326. https://doi.org/10.1002/ase.252
  • Dustman, W., King-Keller, S., & Marquez, R. (2021). Development of gamified, interactive, low-cost, flexible virtual microbiology labs that promote higher-order thinking during pandemic instruction. Journal Of Microbiology & Biology Education, 22(1). https://doi.org/10.1128/jmbe.v22i1.2439
  • Dwivedi, Y., Rana, N., Tamilmani, K., & Raman, R. (2020). A meta-analysis based modified unified theory of acceptance and use of technology (meta-UTAUT): A review of emerging literature. Current Opinion In Psychology, 36, 13–18. https://doi.org/10.1016/j.copsyc.2020.03.008
  • Enneking, K. M., Breitenstein, G. R., Coleman, A. F., Reeves, J. H., Wang, Y., & Grove, N. P. (2019). The evaluation of a hybrid, general chemistry laboratory curriculum: Impact on students’ cognitive, affective, and psychomotor learning. Journal of Chemical Education, 96(6), 1058–1067. https://doi.org/10.1021/acs.jchemed.8b00637
  • Faulconer, E., & Gruss, A. (2018). A review to weigh the pros and cons of online, remote, and distance science laboratory experiences. The International Review of Research In Open And Distributed Learning, 19(2), 155–168. https://doi.org/10.19173/irrodl.v19i2.3386.
  • Feisel, L. D., & Rosa, A. J. (2005). The role of the laboratory in undergraduate engineering education. Journal of Engineering Education, 94(1), 121–130. https://doi.org/10.1002/j.2168-9830.2005.tb00833.x
  • Finkelstein, N. D., Adams, W. K., Keller, C. J., Kohl, P. B., Perkins, K. K., Podolefsky, N. S, Podolefsky, N. S., Reid, S., & LeMaster, R. (2005). When learning about the real world is better done virtually: A study of substituting computer simulations for laboratory equipment. Phy Rev Special Top Phy Educ Res, 1(1), 1–8. https://doi.org/10.1103/PhysRevSTPER.1.010103
  • Fishbein, M., & Ajzen, I. (1975). Belief, attitude, intention, and behavior: An introduction to theory and research. Addison-Wesley.
  • Fornell, C., & Larcker, D. (1981). Evaluating structural equation models with unobservable variables and measurement error. Journal of Marketing Research, 18(1), 39–50. https://doi.org/10.1177/002224378101800104
  • Govaerts, S., Cao, Y., Vozniuk, A., Holzer, A., Zutin, D. G., Ruiz, E. S., Bollen, L., Manske, S., Faltin, N., Salzmann, C., & Tsourlidaki, E. (2013). Towards an online lab portal for inquiry-based STEM learning at school. In Jhing-Fa Wang & Rynson Lau (Eds.), Advances in Web-based Learning - ICWL 2013 (Proceedings of the 12th International Conference on Web-based Learning) (pp. 244e253). Kenting.
  • Han, J., Tian, Y., Song, W., & Fong, S. (2017, December 20–22). An implementation of VR chemistry experiment system. Proceedings of the ACM International Conference Proceeding Series, 205–208. https://doi.org/10.1145/3175684.3175708
  • Henseler, J., Hubona, G., & Ray, P. (2016). Using PLS path modeling in new technology research: Updated guidelines. Industrial Management & Data Systems, 116(1), 2–20. https://doi.org/10.1108/IMDS-09-2015-0382
  • Herrera, R. S., Márquez, M. A., Mejías, A., Tirado, R., & Andújar, J. M. (2015). Exploring the usability of a remote laboratory for photovoltaic systems. IFAC PapersOnLine, 48(29), 7–12. https://doi.org/10.1016/j.ifacol.2015.11.205
  • Hoi, V. (2020). Understanding higher education learners’ acceptance and use of mobile devices for language learning: A Rasch-based path modeling approach. Computers & Education, 146, 103761. https://doi.org/10.1016/j.compedu.2019.103761
  • Jaakkola, T., & Nurmi, S. (2008). Fostering elementary school students’ understanding of simple electricity by combining simulation and laboratory activities. Journal of Computer Assisted Learning, 24(4), 271–283. https://doi.org/10.1111/j.1365-2729.2007.00259.x
  • JagodziAski, P., & Wolski, R. (2015). Assessment of application technology of natural user interfaces in the creation of a virtual chemical laboratory. Journal of Science Education and Technology, 24(1), 16–28. https://doi.org/10.1007/s10956-014-9517-5
  • Jones, N. (2018). Simulated labs are booming. Nature, 562(7725), S5–S7. https://doi.org/10.1038/d41586-018-06831-1
  • Khechine, H., Lakhal, S., Pascot, D., & Bytha, A. (2014). UTAUT model for blended learning: The role of gender and age in the intention to use webinars. Interdisciplinary Journal Of E-Skills And Lifelong Learning, 10, 033–052. https://doi.org/10.28945/1994
  • Kim, H., Nah, S., Oh, J., & Ryu, H. (2019, March 23–27). VR-MOOCs: A learning management system for VR education. Proceedings of the 26th IEEE Conference on Virtual Reality and 3D user Interfaces, VR, 1325–1326. https://doi.org/10.1109/VR.2019.8798106
  • Klahr, D., Triona, L. M., & Williams, C. (2007). Hands on what? The relative effectiveness of physical versus virtual materials in an engineering design project by middle school children. Journal of Research in Science Teaching, 44(1), 183–203. https://doi.org/10.1002/tea.20152
  • Kock, N. (2017). WarpPLS. http://www.warppls.com
  • Kock, N. (2018). WarpPLS 5.0 user manual. ScripWarp Systems. http://cits.tamiu.edu/WarpPLS/UserManual_v_6_0.pdf
  • Kolil, V. K., Muthupalani, S., & Achuthan, K. (2020). Virtual experimental platforms in chemistry laboratory education and its impact on experimental self-efficacy. International Journal of Educational Technology in Higher Education, 17(1), 1–22. https://doi.org/10.1186/s41239-020-00204-3
  • Lemay, D. J., Doleck, T., & Bazelais, P. (2019). Context and technology use: Opportunities and challenges of the situated perspective in technology acceptance research. British Journal of Educational Technology, 50(5), 2450–2465. https://doi.org/10.1111/bjet.12859
  • Lemay, D. J., Morin, M. M., Bazelais, P., & Doleck, T. (2018). Modeling students’ perceptions of simulation-based learning using the technology acceptance model. Clinical Simulation in Nursing, 20, 28–37. https://doi.org/10.1016/j.ecns.2018.04.004
  • Ma, J., & Nickerson, J. V. (2006). Hands-on, simulated, and remote laboratories: A comparative literature review. ACM Computing Surveys, 38(3), 1–24. https://doi.org/10.1145/1132960.1132961
  • Makransky, G., Borre-Gude, S., & Mayer, R. E. (2019). Motivational and cognitive benefits of training in immersive virtual reality based on multiple assessments. Journal of Computer Assisted Learning, 35(6), 691–707. https://doi.org/10.1111/jcal.12375
  • Marchewka, J. T., Liu, G., & Kostiwa, K. (2007). An application of the UTAUT model for understanding student perceptions using course management software. Communications of the IIMA, 7(2), 93–104.
  • Maruping, L., Bala, H., Venkatesh, V., & Brown, S. (2016). Going beyond intention: Integrating behavioral expectation into the unified theory of acceptance and use of technology. Journal of the Association for Information Science And Technology, 68(3), 623–637. https://doi.org/10.1002/asi.23699
  • Mircik, O. K., & Saka, A. Z. (2018). Evaluation of research related to virtual physics laboratory applications. Canadian Journal of Physics, 96(7), 740–744. https://doi.org/10.1139/cjp-2017-0747
  • Orlowski, M., Mejia, C., Back, R., & Fridrich, J. (2021). Transition to online culinary and beverage labs: determining student engagement and satisfaction during COVID-19. Journal Of Hospitality & Tourism Education, 33(3), 163–175. https://doi.org/10.1080/10963758.2021.1907193
  • Penn, M., & Ramnarain, U. (2019). South African university students’ attitudes towards chemistry learning in a virtually simulated learning environment. Chemistry Education Research and Practice, 20(4), 699–709. https://doi.org/10.1039/C9RP00014C
  • Post, L., Guo, P., Saab, N., & Admiraal, W. (2019). Effects of remote labs on cognitive, behavioral, and affective learning outcomes in higher education. Computers & Education, 140, 103596. https://doi.org/10.1016/j.compedu.2019.103596
  • Potkonjak, V., Gardner, M., Callaghan, V., Mattila, P., Guetl, C., Petrović, V., & Jovanović, K. (2016). Virtual laboratories for education in science, technology, and engineering: A review. Computers & Education, 95, 309–327. https://doi.org/10.1016/j.compedu.2016.02.002
  • Puntambekar, S., Gnesdilow, D., Dornfeld Tissenbaum, C., Narayanan, N. H., & Rebello, N. S. (2021). Supporting middle school students’ science talk: A comparison of physical and virtual labs. Journal of Research in Science Teaching, 58(3), 392–419. https://doi.org/10.1002/tea.21664
  • Pyatt, K., & Sims, R. (2007). Learner performance and attitudes in traditional versus simulated laboratory experiences. In R. J. Atkinson, C. McBeath, S. K. A. Soong, & C. Cheers (Eds.), ICT: Providing choices for learners and learning. Proceedings of ASCILITE Singapore 2007 (pp. 870–879). Singapore: The Center for Educational Development, Nanyang Technological University.
  • Pyatt, K., & Sims, R. (2012). Virtual and physical experimentation in inquiry-based science labs: Attitudes, performance and access. Journal of Science Education and Technology, 21(1), 133–147. https://doi.org/10.1007/s10956-011-9291-6
  • Reeves, S. M., & Crippen, K. J. (2021). Virtual laboratories in undergraduate science and engineering courses: A systematic review, 2009-2019. Journal of Science Education and Technology, 30(1), 16–30. https://doi.org/10.1007/s10956-020-09866-0
  • Reid, N., & Shah, I. (2007). The role of laboratory work in university chemistry. Chemistry Education Research and Practice, 8(2), 172–185. https://doi.org/10.1039/B5RP90026C
  • Richter, T., Boehringer, D., & Jeschke, S. (2009, June 22–25). Lila: A European project on networked experiments. Proceedings of the 6th International Conference on Remote Engineering and Virtual Instrumentation (REV 2009), Bridgeport, CT, USA, 41–46.
  • Rizman, H. N, Glažar, S. A., & Dinevski, D. (2015). Dynamic visualization in the virtual laboratory enhances The fundamental understanding of chemical concepts. Journal of Baltic Science Education, 14(3), 351–365. https://doi.org/10.33225/jbse/15.14.351
  • Rutten, N., van Joolingen, W. R., & van der Veen, J. T. (2012). The learning effects of computer simulations in science education. Computers and Education, 58(1), 136–153. https://doi.org/10.1016/j.compedu.2011.07.017
  • Scherer, R., & Teo, T. (2019). Editorial to the special section—technology acceptance models: What we know and what we (still) do not know. British Journal Of Educational Technology, 50(5), 2387–2393. https://doi.org/10.1111/bjet.12866
  • Seery, M. K. (2020). Establishing the laboratory as the place to learn how to do chemistry. Journal of Chemical Education, 97(6), 1511–1514. https://doi.org/10.1021/acs.jchemed.9b00764
  • Sharma, S., & Ahluwalia, P. K. (2018, November 29–December 1). Can virtual labs become a new normal? A case study of Millikan's oil drop experiment. European Journal of Physics, 39(6), 65804. https://doi.org/10.1088/1361-6404/aada39
  • Sypsas, A., & Kalles, D. (2018). Virtual laboratories in biology, biotechnology and chemistry education. Proceedings of the 22nd Pan-Hellenic Conference on Informatics, 70–75. https://doi.org/10.1145/3291533.3291560
  • Tatli, Z., & Ayas, A. (2010). Virtual laboratory applications in chemistry education. Procedia, Social and Behavioral Sciences, 9, 938–942. https://doi.org/10.1016/j.sbspro.2010.12.263
  • Teo, Timothy, Doleck, Tenzin, Bazelais, Paul, & Lemay, David John. (2019). Exploring the drivers of technology acceptance: a study of Nepali school students. Educational Technology Research and Development, 67(2), 495–517. http://doi.org/10.1007/s11423-019-09654-7
  • Theyßen, H., Struzyna, S., Mylott, E., & Widenhorn, R. (2015). Online physics lab exercises—a binational study on the transfer of teaching resources. International Journal of Science and Mathematics Education, 14(5), 865–883. https://doi.org/10.1007/s10763-014-9613-2
  • Thompson, R., Higgins, C., & Howell, J. (1991). Personal computing: Toward a conceptual model of utilization. MIS Quarterly, 15(1), 125–141. https://doi.org/10.2307/249443
  • Tirado-Morueta, R., Sánchez-Herrera, R., Márquez-Sánchez, M., Mejías-Borrero, A., & Andujar-Márquez, J. (2017). Exploratory study of the acceptance of two individual practical classes with remote labs. European Journal Of Engineering Education, 43(2), 278–295. https://doi.org/10.1080/03043797.2017.1363719
  • Ullah, S., Ali, N., & Rahman, S. U. (2016). The effect of procedural guidance on students’ skill enhancement in a virtual chemistry laboratory. Journal of Chemical Education, 93(12), 2018–2025. https://doi.org/10.1021/acs.jchemed.5b00969
  • Venkatesh, V., Morris, M. G., Davis, G. B., & Davis, F. D. (2003). User acceptance of information technology: Toward a unified view. MIS Quarterly, 27(3), 425–478. https://doi.org/10.2307/30036540
  • Venkatesh, V., Thong, J. Y. T., & Xu, X. (2012). Consumer acceptance and use of information technology: Extending the unified theory of acceptance and use of technology. MIS Quarterly, 36(1), 157–178. https://doi.org/10.2307/41410412
  • Wang, Y., Wu, M., & Wang, H. (2009). Investigating the determinants and age and gender differences in the acceptance of mobile learning. British Journal Of Educational Technology, 40(1), 92–118. https://doi.org/10.1111/j.1467-8535.2007.00809.x
  • Williams, M., Rana, N., & Dwivedi, Y. (2015). The unified theory of acceptance and use of technology (UTAUT): A literature review. Journal of Enterprise Information Management, 28(3), 443–488. https://doi.org/10.1108/JEIM-09-2014-0088
  • Winkelmann, K., Keeney-Kennicutt, W., Fowler, D., & Macik, M. (2017). Development, implementation, and assessment of general chemistry lab experiments performed in the virtual world of second life. Journal of Chemical Education, 94(7), 849–858. https://doi.org/10.1021/acs.jchemed.6b00733
  • Zacharia, Z. C., Manoli, C., Xenofontos, N., De Jong, T., Pedaste, M., van Riesen, S. A., Kamp, E. T., Mäeots, M., Siiman, L., & Tsourlidaki, E. (2015). Identifying potential types of guidance for supporting student inquiry when using virtual and remote labs in science: A literature review. Educational Technology Research and Development, 63(2), 257–302. https://doi.org/10.1007/s11423-015-9370-0
  • Zutin, D. G. (2018). Online laboratory architectures and technical considerations. In Michael E. Auer, Abul K.M. Azad, Arthur Edwards & Ton de Jong (Eds.), Cyber-physical laboratories in engineering and science education (pp. 5–16). Springer International Publishing. https://doi.org/10.1007/978-3-319-76935-6_1

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.