492
Views
27
CrossRef citations to date
0
Altmetric
Original Articles

Yak Response to High-Altitude Hypoxic Stress by Altering mRNA Expression and DNA Methylation of Hypoxia-Inducible Factors

, , , , &

REFERENCES

  • Semenza GL. Regulation of mammalian O2 homeostasis by hypoxia-inducible factor 1. Ann Rev Cell Develop Bioly 1999; 15:551–578.
  • Nangaku M, Rosenberger C, Heyman SN, Eckardt KU. Regulation of hypoxia-inducible factor in kidney disease. Clin Exp Pharmacol Physiol 2012; 40:148–157.
  • Majmundar AJ, Wong WJ, Simon MC. Hypoxia-inducible factors and the response to hypoxic stress. Mol Cell 2010; 40:294–309.
  • Lando D, Peet DJ, Gorman JJ, Whelan DA, Whitelaw ML, Bruick RK. FIH-1 is an asparaginyl hydroxylase enzyme that regulates the transcriptional activity of hypoxia-inducible factor. Genes Dev 2002; 16:1466–1471.
  • Wang GL, Jiang BH, Rue EA, Semenza GL. Hypoxia-inducible factor 1 is a basic-helix-loop-helix-PAS heterodimer regulated by cellular O2 tension. PNAS 1995; 92:5510–5514.
  • Gu J, Milligan J, Huang LE. Molecular mechanism of hypoxia-inducible factor 1α -p300 interaction a leucine-rich interface regulated by a single cysteine. Biol Chem 2000; 276:3550–3554.
  • Yu F, White SB, Zhao Q, Lee FS. HIF-1α binding to VHL is regulated by stimulus-sensitive proline hydroxylation. PNAS 2001; 98(17):9630–9635.
  • Semenza GL. HIF-1 and human disease: one highly involved factor. Genes Dev 2000; 14:1893–1991.
  • Kaelin WG, Ratcliffe PJ. Oxygen sensing by metazoans: the central role of the HIF hydroxylase pathway. Mol Cell 2008; 30:393–402.
  • Bertout JA, Patel SA, Simon MC. The impact of O2 availability on human cancer. Nate Rev Cancer 2008; 8:967–975.
  • Sarkar M, Prakash BS. Circadian variations in plasma concentrations of melatonin and prolactin during breeding and non-breeding seasons in yak. Anim Reprod Sci 2005; 90(1–2):149–162.
  • Xiong XR, Li J, Wang LJ, Zhong JC, Zi XD, Wang Y. Low oxygen tension and relative defined culture medium with 3, 4-Dihydroxyflavone are beneficial for yak–bovine interspecies somatic cell nuclear transfer embryo. Reprod Dom Anim 2014; 49:126–133.
  • Qiu Q, Zhang GJ, Ma T, Qian WB, Wang JY, Ye ZQ. The yak genome and adaptation to life at high altitude. Nat Genet 2012; 44:946–949.
  • Xiong XR, Lan DL, Li J, Zhong JC, Zi XD, Wang Y. Zebularine and scriptaid significantly improve epigenetic reprogramming of yak fibroblasts and cloning efficiency. Cellr Reprogram 2013; 15(4):293–300.
  • Wang H, Long RJ, Liang JB, Guo XS, Ding LM, Shang ZH. Comparison of nitrogen metabolism in Yak (Bos grunniens) and indigenous cattle (Bos taurus) on the Qinghai-Tibetan Plateau. Asian-Aust J Anim Sci 2011; 24:766–773.
  • Shao B, Long R, Ding Y, Wang J, Ding L, Wang H. Morphological adaptations of yak (Bos grunniens) tongue to the foraging environment of the Qinghai-Tibetan Plateau. J Anim Sci 2010; 88:2594–2603.
  • Tamura K, Dudley J, Nei M, Kumar S. MEGA4: molecular evolutionary genetics analysis (MEGA) software version 4.0. Mol Biol Evol 2007; 24:1596–1599.
  • Ruijter JM, Ramakers C, Hoogaars WMH, Karlen Y, Bakker O, VendenHoff MJB, Moorman AFM. Amplification efficiency: linking baseline and bias in the analysis of quantitative PCR data. Nucl Acids Res 2009; 37(6):e45.
  • Bock C, Reither S, Mikeska T, Paulsen M, Walter J, Lengaue T. BiQ Analyzer: visualization and quality control for DNA methylation data from bisulfite sequencing. Applications Note 2005; 21(21):4067–4068.
  • Dolt KS, Mishra MK, Karar J, Baig MA, Ahmed Z, Pasha MAQ. cDNA cloning, gene organization and variant specific expression of HIF-1α in high-altitude yak (Bos grunniens). Gene 2007; 386(1–2):73–80.
  • Semenza GL, Wang GL. A nuclear factor induced by hypoxia via de novo protein synthesis binds to the human erythropoietin gene enhancer at a site required for transcriptional activation. Mol Cell Biol 1992; 12(12):5447–5454.
  • Iyer NV, Leung SW, Semenza GL. The human hypoxia-inducible factor 1α gene: HIF1A structure and evolutionary conservation. Genomics 1998; 52(2):159–165.
  • Mole DR, Blancher C, Copley RR, Pollard PJ, Gleadle JM, Ragoussis J, Ratcliffe PJ. Genome-wide association of hypoxiainducible factor (HIF)-1α and HIF-2α DNA binding with expression profiling of hypoxia-inducible transcripts. J Biol Chem 2009; 284(25):16767–16775.
  • Loboda A, Jozkowicz A, Dulak J. HIF-1 and HIF-2 transcription factors similar but not identical. Mol Cells 2010; 29:435–442.
  • Pietras A, Johnsson AS, Pahlman S. The HIF-2α-driven pseudo-hypoxic phenotype in tumor aggressiveness, differentiation, and vascularization. Curr Top Microbiol Immunol 2010; 810:1–20.
  • Kapitsinou PP, Liu Q, Unger TL, Rha J, Davidoff O, Keith B, Epstein JA, Moores SL, Erickson-Miller CL, Haase VH. Hepatic HIF-2 regulates erythropoietic responses to hypoxia in renal anemia. Blood 2010; 116(16):3039–3048.
  • Holmquist-Mengelbier L, Fredlund E, Lofstedt T, Noguera R, Navarro S, Nilsson H, Pietras A, Vallon-Christersson J, Borg A, Gradin K, Poellinger L, Påhlman S. Recruitment of HIF-1α and HIF-2α to common target gene is differentially regulated in neuroblastoma: HIF-2α promotes an aggressive phenotype. Cancer Cell 2006; 10:413–423.
  • Loenarz C, Coleman ML, Boleininger A, Schierwater B, Holland PWH, Ratcliffe PJ, Schofield CJ. The hypoxia-inducible transcription factor pathway regulates oxygen sensing in the simplest animal, trichoplax adhaerens. EMBO Rep 2011; 12(1):63–70.
  • Rosenberger C, Mandriota S, Jurgensen JS, Wiesener MS, Horstrup JH, Frei U, Ratcliffe PJ, Maxwell PH, Bachmann S, Eckardt KU. Expression of hypoxia-inducible factor-1α and -2α in hypoxic and ischemic rat kidneys. J Am Soc Nephrol 2002; 13:1721–1732.
  • Gordan JD, Bertout JA, Hu CJ, Diehl JA, Simon MC. HIF-2α promotes hypoxic cell proliferation by enhancing c-myc transcriptional activity. Cancer Cell 2007; 11:335–347.
  • Zhao TB, Ning HX, Zhu SS, Sun P, Xu SX, Chang ZJ, Zhao XQ. Cloning of hypoxia-inducible factor 1α cDNA from a high hypoxia tolerant mammal-plateau pika (Ochotona curzoniae). Biochem Biophys Res Commun 2004; 316:565–572.
  • Sowter HM, Raval R, Moore J, Ratcliffe PJ, Harris AL. Predominant role of hypoxia-inducible transcription factor (Hif)-1α versus Hif-2α in regulation of the transcriptional response to hypoxia. Cancer Res 2003; 63:6130–6134.
  • Lane N, Martin W. The energetics of genome complexity. Nature 2010; 467(7318):929–934.
  • Yuan GX, Penga YJ, Reddya VD, Makarenkoa VV, Nanduri J, Khan SA, Garcia JA. Mutual antagonism between hypoxia-inducible factors 1α and 2α regulates oxygen sensing and cardio-respiratory homeostasis. PNAS 2013; 110(19):E1788–E1796.
  • Schofield CJ, Ratcliffe PJ. Signalling hypoxia by HIF hydroxylases. Biochem Biophys Res Commun 2005; 338:617–626.
  • Wenger RH. Cellular adaptation to hypoxia: O2-sensing protein hydroxylases, hypoxia-inducible transcription factors, and O2-regulated gene expression. FASEB J 2002; 16:1151–1162.
  • Kondo K, Klco J, Nakamura E, Lechpammer M, Kaelin WG. Inhibition of HIF is necessary for tumor suppression by the von Hippel-Lindau protein. Cancer Cell 2002; 1(3):237–246.
  • Simonson T, Yang YZ, Huff CD, Yun HX, Qin G, Witherspoon DJ, Bai ZZ, Lorenzo FR, Xing JC, Jorde LB. Genetic evidence for high-altitude adaptation in Tibet. Science 2010; 329(5987):72–75.
  • Yi X, Liang Y, Huerta-Sanchez E, Jin X, Cuo ZXP, Pool JE, Xu X, Jiang H, Vinckenbosch N, Korneliussen TS. Sequencing of 50 human exomes reveals adaptation to high altitude. Science 2010; 329(5987):75–78.
  • Heard E, Disteche CM. Dosage compensation in mammals: fine-tuning the expression of the X chromosome. Genes Dev 2006; 20:1848–1867.
  • Irizarry RA, Ladd-Acosta C, Wen B, Wu Z, Montano C, Feinberg AP. The human colon cancer methylome shows similar hypo- and hyper-methylation at conserved tissue-specific CpG island shores. Nat Genets 2009; 41:178–186.
  • Reik W. Stability and flexibility of epigenetic gene regulation in mammalian development. Nature 2007; 447:425–432.
  • Gibbs JR, van der Brug MP, Hernandez DG, Traynor BJ, Nalls MA, Singleton AB. Abundant quantitative trait Loci exist for DNA methylation and gene expression in human brain. PLoS Genet 2010; 6(5):e1000952.
  • Rakyan VK, Down TA, Thorne NP, Flicek P, Kulesha E, Beck S. An integrated resource for genome-wide identification and analysis of human tissue-specific differentially methylated regions (tDMRs). Gen Res 2008; 18:1518–1529.
  • Jaenisch R, Bird A. Epigenetic regulation of gene expression: how the genome intergrates intrinsic and environmental signals. Nat Genet 2003; 33:245–254.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.