279
Views
8
CrossRef citations to date
0
Altmetric
Short Communication

Expression of Antisense Long Noncoding RNAs as Potential Regulators in Rainbow Trout with Different Tolerance to Plant-Based Diets

&

References

  • Hardy RW. Utilization of plant proteins in fish diets: effects of global demand and supplies of fishmeal. Aquac Res. 2010;41:770–6.
  • Krogdahl Å, Penn M, Thorsen J, Refstie S, Bakke AM. Important antinutrients in plant feedstuffs for aquaculture: an update on recent findings regarding responses in salmonids. Aquac Res. 2010;41:333–44.
  • Overturf K, Barrows FT, Hardy RW. Effect and interaction of rainbow trout strain (Oncorhynchus mykiss) and diet type on growth and nutrient retention. Aquac Res. 2013;44:604–11.
  • Venold FF, Penn MH, Krogdahl Å, Overturf, K. Severity of soybean meal induced distal intestinal inflammation, enterocyte proliferation rate, and fatty acid binding protein (Fabp2) level differ between strains of rainbow trout (Oncorhynchus mykiss). Aquaculture. 2012;364–365:281–92. doi:10.1016/j.aquaculture.2012.08.035
  • Abernathy J, Brezas A, Snekvik KR, Hardy, RW, Overturf K. Integrative functional analyses using rainbow trout selected for tolerance to plant diets reveal nutrigenomic signatures for soy utilization without the concurrence of enteritis. PLoS One. 2017;12:e0180972. doi:10.1371/journal.pone.0180972
  • Villegas VE, Zaphiropoulos PG. Neighboring gene regulation by antisense long non-coding RNAs. Int J Mol Sci. 2015;16:3251–66.
  • Vance KW, Ponting CP. Transcriptional regulatory functions of nuclear long noncoding RNAs. Trends Genet. 2014;30:348–55. doi:10.1016/j.tig.2014.06.001
  • Faghihi MA, Wahlestedt C. Regulatory roles of natural antisense transcripts. Nat Rev Mol Cell Biol. 2009;10:637–43. doi:10.1038/nrm2738
  • Li K, Ramchandran R. Natural antisense transcript: a concomitant engagement with protein-coding transcript. Oncotarget 2010;1:447–52. doi:10.18632/oncotarget.178
  • Munroe SH, Zhu J. Overlapping transcripts, double-stranded RNA and antisense regulation: a genomic perspective. Cell Mol Life Sci. 2006;63:2102–18. doi:10.1007/s00018-006-6070-2
  • Rinn JL, Chang HY. Genome regulation by long noncoding RNAs. Annu Rev Biochem. 2012;81:145–66. doi:10.1146/annurev-biochem-051410-092902
  • Hitchen J, Sooknanan R, Khanna A. ScriptSeq V2 library preparation method: a rapid and efficient method for preparing directional RNA-Seq libraries. J Biomol Tech. 2012;23:S33–4.
  • Wight M, Werner A. The functions of natural antisense transcripts. Essays Biochem. 2013;54:91–101. doi:10.1042/bse0540091
  • Abernathy J, Overturf K. Comparison of ribosomal RNA removal methods for transcriptome sequencing workflows in teleost fish. Anim Biotechnol. 2016;27:60–5.
  • Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods. 2012;9:357–9. doi:10.1038/nmeth.1923
  • Grabherr MG, Haas BJ, Yassour M, Amit LI. Trinity: reconstructing a full-length transcriptome without a genome from RNA-Seq data. Nat Biotechnol. 2011;29:644–52.
  • Musacchia F, Basu S, Petrosino G, Salvemini M, Sanges R. Annocript: a flexible pipeline for the annotation of transcriptomes able to identify putative long noncoding RNAs. Bioinformatics. 2015;31:2199–201. doi:10.1093/bioinformatics/btv106
  • Arrial RT, Togawa RC, Brigido Mde M. Screening non-coding RNAs in transcriptomes from neglected species using PORTRAIT: case study of the pathogenic fungus Paracoccidioides brasiliensis. BMC Bioinf. 2009;10:239. doi:10.1186/1471-2105-10-239
  • Wernersson R. Virtual ribosome – a comprehensive DNA translation tool with support for integration of sequence feature annotation. Nucleic Acids Res. 2006;34:W385–W388. doi:10.1093/nar/gkl252
  • Salem M, Paneru B, Al-Tobasei R, Abdouni F, Thorgaard GH, Rexroad CE, Yao J. Transcriptome assembly, gene annotation and tissue gene expression atlas of the rainbow trout. PLoS ONE. 2015;10:e0121778. doi:10.1371/journal.pone.0121778
  • Roberts A, Pachter L. Streaming fragment assignment for real-time analysis of sequencing experiments. Nat Methods. 2013;10:71–3. doi:10.1038/nmeth.2251
  • Love MI, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 2014;15:550. doi:10.1186/s13059-014-0550-8
  • Yendrek CR, Ainsworth EA, Thimmapuram J. The bench scientist’s guide to statistical analysis of RNA-seq data. BMC Res Notes. 2012;5:506. doi:10.1186/1756-0500-5-506
  • Nunez-Acuna G, Detree C, Gallardo-Escarate C, Gonçalves AT. Functional diets modulate lncRNA-coding RNAs and gene interactions in the intestine of rainbow trout Oncorhynchus mykiss. Mar Biotechnol. 2017;19:287–300.
  • Paneru B, Al-Tobasei R, Palti Y, Wiens Wiens. Differential expression of long non-coding RNAs in three genetic lines of rainbow trout in response to infection with Flavobacterium psychrophilum. Sci Rep. 2016;6:36032.
  • Geay F, Ferraresso S, Zambonino-Infante JL, Bargelloni L, Quentel, C, Vandeputte M, Kaushik S, Cahu Quentel, C, Vandeputte M, Kaushik S, Cahu. Effects of the total replacement of fish-based diet with plant-based diet on the hepatic transcriptome of two European sea bass (Dicentrarchus labrax) half-sibfamilies showing different growth rates with the plant-based diet. BMC Genomics. 2011;12:522. doi:10.1186/1471-2164-12-522
  • Gu M, Kortner TM, Penn M, Hansen AK, Krogdahl A. Effects of dietary plant meal and soya-saponin supplementation on intestinal and hepatic lipid droplet accumulation and lipoprotein and sterol metabolism in Atlantic salmon (Salmo salar L.). Br J Nutr. 2014;111:432–44.
  • Król E, Douglas A, Tocher DR, Crampton VO, Speakman JR, Secombes CJ, Martin SAM. Differential responses of the gut transcriptome to plant protein diets in farmed Atlantic salmon. BMC Genomics. 2016;17:156. doi:10.1186/s12864-016-2473-0
  • Tacchi L, Secombes CJ, Bickerdike R, Adler MA, Venegas C, Takle H, Martin SAM. Transcriptomic and physiological responses to fishmeal substitution with plant proteins in formulated feed in farmed Atlantic salmon (Salmo salar). BMC Genomics. 2012;13:363. doi:10.1186/1471-2164-13-363
  • Zhu T, Corraze G, Plagnes-Juan E, Quillet E, Dupont-Nivet M, Skiba-Cassy S. Regulation of genes related to cholesterol metabolism in rainbow trout (Oncorhynchus mykiss) fed plant-based diet. Am J Physiol. 2017; in press. doi:10.1152/ajpregu.00179.2017.
  • Al-Tobasei R, Paneru B, Salem M. Genome-wide discovery of long non-coding RNAs in rainbow trout. PLoS One. 2016;11:e0148940. doi:10.1371/journal.pone.0148940
  • Perland E, Hellsten SV, Lekholm E, Eriksson MM, Arapi V, Fredriksson R. The novel membrane-bound proteins MFSD1 and MFSD3 are putative SLC transporters affected by altered nutrient intake. J Mol Neurosci. 2017;61:199–214.
  • Pessentheiner AR, Huber K, Pelzmann HJ, Prokesch A, Radner FPW, Wolinski H, Lindroos-Christensen J, Hoefler G, Rülicke T, Birner-Gruenberger R, et al. APMAP interacts with lysyl oxidase–like proteins, and disruption of Apmap leads to beneficial visceral adipose tissue expansion. FASEB J. 2017;31:4088–103. doi:10.1096/fj.201601337r
  • Torstensen BE, Espe M, Stubhaug I, Lie O. Dietary plant proteins and vegetable oil blends increase adiposity and plasma lipids in Atlantic salmon (Salmo salar L.). Br J Nutr. 2011;106:633–47.
  • Martin SAM, Krol E. Nutrigenomics and immune function in fish: new insights from omics technologies. Dev Comp Immunol. 2017;75:86–98.
  • Hubler MJ, Kennedy AJ. Role of lipids in the metabolism and activation of immune cells. J Nutr Biochem. 2016;34:1–7.
  • Barnicle A, Seoighe CM, Greally J, Golden A, Egan LJ. Inflammation-associated DNA methylation patterns in epithelium of ulcerative colitis. Epigenetics. 2017;12:591–606. doi:10.1080/15592294.2017.1334023
  • Boros É, Csatári M, Varga C, Bálint B, Nagy I. Specific gene- and MicroRNA-expression pattern contributes to the epithelial to mesenchymal transition in a rat model of experimental colitis. Mediators Inflamm. 2017;2017:5257378. doi:10.1155/2017/5257378
  • Brocker C, Thompson DC, Vasiliou V. The role of hyperosmotic stress in inflammation and disease. Biomol Concepts. 2012;3:345–64. doi:10.1515/bmc-2012-0001
  • Dolapcioglu C, Soylu A, Kendir T, Ince AT, Dolapcioglu H, Purisa S, Bolukbas C, Sokmen HM, Dalay R, Ovunc O. Coagulation parameters in inflammatory bowel disease. Int J Clin Exp Med. 2014;7:1442–8.
  • Hannenhalli S, Kaestner KH. The evolution of Fox genes and their role in development and disease. Nat Rev Genet. 2009;10:233–40.
  • Madison BB, McKenna LB, Dolson D, Epstein DJ, Kaestner KH. FoxF1 and FoxL1 link hedgehog signaling and the control of epithelial proliferation in the developing stomach and intestine. J Biol Chem. 2009;284:5936–44.
  • Nishioka Y, Yamaguchi M, Kawakami A, Munehiro M, Masuda S, Tomaru U, Ishizu A. Type II natural killer T cells that recognize sterol carrier protein 2 are implicated in vascular inflammation in the rat model of systemic connective tissue diseases. Am J Pathol. 2017;187:176–86.
  • Oka A, Ishihara S, Mishima Y, Tada Y, Kusunoki R, Fukuba N, Yuki T, Kawashima K, Matsumoto S, Kinoshita Y. Role of regulatory B cells in chronic intestinal inflammation: association with pathogenesis of Crohn’s disease. Inflamm Bowel Dis. 2014;20:315–28. doi:10.1097/01.mib.0000437983.14544.d5
  • Wang L, Ray A, Jiang X, Wang J, Basu S, Liu X, Qian T, He R, Dittel BN, Chu Y. T regulatory cells and B cells cooperate to form a regulatory loop that maintains gut homeostasis and suppresses dextran sulfate sodium-induced colitis. Mucosal Immunol. 2015;8:1297–312. doi:10.1038/mi.2015.20
  • Wei B, Velazquez P, Turovskaya O, Spricher K, Aranda R, Kronenberg M, Birnbaumer L, Braun J. Mesenteric B cells centrally inhibit CD4 + T cell colitis through interaction with regulatory T cell subsets. Proc Natl Acad Sci USA. 2005;102:2010–5.
  • Snyder EM, McCarty C, Mehalow A, Svenson KL, Murray SA, Korstanje R, Braun RE. APOBEC1 complementation factor (A1CF) is dispensable for C-to-U RNA editing in vivo. RNA. 2017;23:457–65. doi:10.1261/rna.058818.116
  • Sato R. Sterol metabolism and SREBP activation. Arch Biochem Biophys. 2010;501:177–81.
  • Velmeshev D, Magistri M, Faghihi MA. Expression of non-protein-coding antisense RNAs in genomic regions related to autism spectrum disorders. Mol Autism. 2013;4:32. doi:10.1186/2040-2392-4-32
  • Jain U, Otley AR, Van Limbergen J, Stadnyk AW. The complement system in inflammatory bowel disease. Inflamm Bowel Dis. 2014;20:1628–37. doi:10.1097/mib.0000000000000056
  • Shushimita S, van der Pol P, de Bruin RW, IJzermans JNM, Van Kooten C, Dor FJMF. Dietary restriction and fasting downregulate complement activity. BMC Proc. 2012;6:P66. doi:10.1186/1753-6561-6-s3-p66
  • Balasubramanian MN, Panserat S, Dupont-Nivet M, Quillet E, Montfort J, Le Cam A, Medale F, Kaushik SJ, Geurden I. Molecular pathways associated with the nutritional programming of plant-based diet acceptance in rainbow trout following an early feeding exposure. BMC Genom. 2016;17:449. doi:10.1186/s12864-016-2804-1
  • Dong Y, Yoshitomi T, Hu J-F, Cui, J. Long noncoding RNAs coordinate functions between mitochondria and the nucleus. Epigenet Chromatin. 2017;10:41. doi:10.1186/s13072-017-0149-x

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.