266
Views
1
CrossRef citations to date
0
Altmetric
Articles

Daidzein promotes milk synthesis and proliferation of mammary epithelial cells via the estrogen receptor α-dependent NFκB1 activation

, & ORCID Icon

References

  • Hussain H, Green IR. A patent review of the therapeutic potential of isoflavones (2012–2016). Expert Opin Ther Pat. 2017;27(10):1135–1146.
  • Danciu C, Avram S, Pavel IZ, et al. Main isoflavones found in dietary sources as natural anti-inflammatory agents. CDT. 2018;19(7):841–853.
  • Setchell K. The history and basic science development of soy isoflavones. Menopause. 2017;24(12):1338–1350.
  • Xiao Y, Zhang S, Tong H, Shi S. Comprehensive evaluation of the role of soy and isoflavone supplementation in humans and animals over the past two decades. Phytother Res. 2018;32(3):384–394.
  • Křížová L, Dadáková K, Kašparovská J, Kašparovský T. Isoflavones. Molecules. 2019;24(6):1076.
  • Smeriglio A, Calderaro A, Denaro M, Laganà G, Bellocco E. Effects of isolated isoflavones intake on health. CMC. 2019;26(27):5094–5107.
  • Mayo B, Vázquez L, Flórez AB. Equol: a bacterial metabolite from the daidzein isoflavone and its presumed beneficial health effects. Nutrients. 2019;11(9):2231.
  • Ahn SY, Jo MS, Lee D, et al. Dual effects of isoflavonoids from Pueraria lobata roots on estrogenic activity and anti-proliferation of MCF-7 human breast carcinoma cells. Bioorg Chem. 2019;83:135–144.
  • Uifălean A, Schneider S, Gierok P, Ionescu C, Iuga CA, Lalk M. The impact of soy isoflavones on MCF-7 and MDA-MB-231 breast cancer cells using a global metabolomic approach. IJMS. 2016;17(9):1443.
  • Uifălean A, Schneider S, Ionescu C, Lalk M, Iuga CA. Soy isoflavones and breast cancer cell lines: molecular mechanisms and future perspectives. Molecules. 2015;21(1):13.
  • Ariyani W, Miyazaki W, Koibuchi N. A novel mechanism of S-equol action in neurons and astrocytes: the possible involvement of GPR30/GPER1. IJMS. 2019;20(20):5178.
  • Li Z, Li J, Mo B, et al. Genistein induces cell apoptosis in MDA-MB-231 breast cancer cells via the mitogen-activated protein kinase pathway. Toxicol in Vitro. 2008;22(7):1749–1753.
  • Pan H, Zhou W, He W, et al. Genistein inhibits MDA-MB-231 triple-negative breast cancer cell growth by inhibiting NF-κB activity via the Notch-1 pathway. Int J Mol Med. 2012;30(2):337–343.
  • Jena MK, Jaswal S, Kumar S, Mohanty AK. Molecular mechanism of mammary gland involution: AN update. Dev Biol. 2019;445(2):145–155.
  • Herve L, Quesnel H, Lollivier V, Boutinaud M. Regulation of cell number in the mammary gland by controlling the exfoliation process in milk in ruminants. J Dairy Sci. 2016;99(1):854–863.
  • Capuco AV, Choudhary RK. Symposium review: Determinants of milk synthesis: Understanding population dynamics in the bovine mammary epithelium. J Dairy Sci. 2020;103(3):2928–2940
  • Li P, Zhou C, Li X, Yu M, Li M, Gao X. CRTC2 is a key mediator of amino acid-induced milk fat synthesis in mammary epithelial cells. J Agric Food Chem. 2019;67(37):10513–10520.
  • Li X, Li P, Wang L, Zhang M, Gao X. Lysine enhances the stimulation of fatty acids on milk fat synthesis via the GPRC6A-PI3K-FABP5 signaling in bovine mammary epithelial cells. J Agric Food Chem. 2019;67(25):7005–7015.
  • Zhang M, Chen D, Zhen Z, Ao J, Yuan X, Gao X. Annexin A2 positively regulates milk synthesis and proliferation of bovine mammary epithelial cellsthrough the mTOR signaling pathway. J Cell Physiol. 2018;233(3):2464–2475.
  • Pauloin A, Chanat E. Prolactin and epidermal growth factor stimulate adipophilin synthesis in HC11 mouse mammary epithelial cells via the PI3-kinase/Akt/mTOR pathway. Biochim Biophys Acta. 2012;1823(5):987–996.
  • Li P, Yu M, Zhou C, et al. FABP5 is a critical regulator of methionine- and estrogen-induced SREBP-1c gene expression in bovine mammary epithelial cells. J Cell Physiol. 2019;234(1):537–549.
  • Huang X, Zang Y, Zhang M, Yuan X, Li M, Gao X. Nuclear factor of κB1 is a key regulator for the transcriptional activation of milk synthesis in bovine mammary epithelial cells. DNA Cell Biol. 2017;36(4):295–302.
  • Tsugami Y, Matsunaga K, Suzuki T, Nishimura T, Kobayashi K. Isoflavones and their metabolites influence the milk component synthesis ability of mammary epithelial cells through prolactin/STAT5 signaling. Mol Nutr Food Res. 2017;61:1700156.
  • Tsugami Y, Matsunaga K, Suzuki T, Nishimura T, Kobayashi K. Phytoestrogens weaken the blood-milk barrier in lactating mammary epithelial cells by affecting tight junctions and cell viability. J Agric Food Chem. 2017;65(50):11118–11124.
  • Feng Y, Manka D, Wagner KU, Khan SA. Estrogen receptor-alpha expression in the mammary epithelium is required for ductal and alveolar morphogenesis in mice. Proc Natl Acad Sci USA. 2007;104(37):14718–14723.
  • Dall GV, Hawthorne S, Seyed-Razavi Y, et al. Estrogen receptor subtypes dictate the proliferative nature of the mammary gland. J Endocrinol. 2018;237(3):323–336.
  • Tarulli GA, Laven-Law G, Shakya R, Tilley WD, Hickey TE. Hormone-sensing mammary epithelial progenitors: emerging identity and hormonal regulation. J Mammary Gland Biol Neoplasia. 2015;20(1–2):75–91.
  • Safe S, Kim K. Non-classical genomic estrogen receptor (ER)/specificity protein and ER/activating protein-1 signaling pathways. J Mol Endocrinol. 2008;41(5):263–275.
  • Hao D, Li J, Wang J, et al. Non-classical estrogen signaling in ovarian cancer improves chemo-sensitivity and patients outcome. Theranostics. 2019;9(13):3952–3965.
  • Choi EJ, Jung JY, Kim GH. Genistein inhibits the proliferation and differentiation of MCF-7 and 3T3-L1 cells via the regulation of ERα expression and induction of apoptosis. Exp Ther Med. 2014;8(2):454–458.
  • Kaushik S, Shyam H, Sharma R, Balapure AK. Dietary isoflavone daidzein synergizes centchroman action via induction of apoptosis and inhibition of PI3K/Akt pathway in MCF-7/MDA MB-231 human breast cancer cells. Phytomedicine. 2018;40:116–124.
  • Sotoca AM, Ratman D, van der Saag P, et al. Phytoestrogen-mediated inhibition of proliferation of the human T47D breast cancer cells depends on the ERalpha/ERbeta ratio. J Steroid Biochem Mol Biol. 2008;112(4-5):171–178.
  • Zidon TM, Padilla J, Fritsche KL, et al. Effects of ERβ and ERα on OVX-induced changes in adiposity and insulin resistance. J Endocrinol. 2020;245(1):165–178.
  • Gourdy P, Guillaume M, Fontaine C, et al. Estrogen receptor subcellular localization and cardiometabolism. Mol Metab. 2018;15:56–69.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.