433
Views
1
CrossRef citations to date
0
Altmetric
Articles

Whole-genome SNP markers reveal runs of homozygosity in indigenous cattle breeds of Pakistan

, , &

References

  • Curik I, Ferenčaković M, Sölkner JJLS. Inbreeding and runs of homozygosity: a possible solution to an old problem. Livest Sci. 2014;166:26–34.
  • Gibson J, Morton NE, Collins A. Extended tracts of homozygosity in outbred human populations. Hum Mol Genet. 2006;15(5):789–795.
  • Gurgul A, Szmatoła T, Topolski P, Jasielczuk I, Żukowski K, Bugno-Poniewierska M. The use of runs of homozygosity for estimation of recent inbreeding in Holstein cattle. J Appl Genet. 2016;57(4):527–530.
  • Purfield DC, Berry DP, McParland S, Bradley DG. Runs of homozygosity and population history in cattle. BMC Genet. 2012;13(1):70–11.
  • Falconer D, Mackay T. Introduction to Quantitative Genetics. Harlow: Addison Wesley Longman; 1996.
  • Peripolli E, Munari D, Silva M, Lima A, Irgang R, Baldi F. Runs of homozygosity: current knowledge and applications in livestock. Anim Genet. 2017;48(3):255–271.
  • Bosse M, Megens H, Madsen O, et al. Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLOS Genet. 2012;8(11):e1003100.
  • Pemberton TJ, Absher D, Feldman MW, Myers RM, Rosenberg NA, Li JZ. Genomic patterns of homozygosity in worldwide human populations. Am J Hum Genet. 2012;91(2):275–292.
  • Forutan M, Mahyari SA, Baes C, Melzer N, Schenkel FS, Sargolzaei M. Inbreeding and runs of homozygosity before and after genomic selection in North American Holstein cattle. BMC Genom. 2018;19(1):1–12.
  • Kim ES, Sonstegard TS, Rothschild MF. Recent artificial selection in US Jersey cattle impacts autozygosity levels of specific genomic regions. BMC Genom. 2015;16(1):1–10.
  • Keller MC, Visscher PM, Goddard ME. Quantification of inbreeding due to distant ancestors and its detection using dense single nucleotide polymorphism data. Genetics. 2011;189(1):237–249.
  • Howrigan DP, Simonson MA, Keller MC. Detecting autozygosity through runs of homozygosity: a comparison of three autozygosity detection algorithms. BMC Genom. 2011;12(1):1–15.
  • Gomez-Raya L, Rodríguez C, Barragán C, Silió L. Genomic inbreeding coefficients based on the distribution of the length of runs of homozygosity in a closed line of Iberian pigs. Genet Sel. 2015;47(1):1–15.
  • Szmatoła T, Gurgul A, Ropka-Molik K, Jasielczuk I, Ząbek T, Bugno-Poniewierska M. Characteristics of runs of homozygosity in selected cattle breeds maintained in Poland. Livest Sci. 2016;188:72–80.
  • Xie R, Shi L, Liu J, et al. Genome-wide scan for runs of homozygosity identifies candidate genes in three pig breeds. Animals. 2019;9(8):518.
  • Pandey A, Sharma R, Singh Y, Prakash B, Ahlawat S. Genetic diversity studies of Kherigarh cattle based on microsatellite markers. J Genet. 2006;85(2):117–122.
  • Sharma R, Kishore A, Mukesh M, et al. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genom. 2015;16(1):1–12.
  • Purfield DC, McParland S, Wall E, Berry DP. The distribution of runs of homozygosity and selection signatures in six commercial meat sheep breeds. PLOS One. 2017;12(5):e0176780.
  • Xu Z, Sun H, Zhang Z, et al. Assessment of autozygosity derived from runs of homozygosity in Jinhua pigs disclosed by sequencing data. Front Genet. 2019;10:274.
  • Decker JE, McKay SD, Rolf MM, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLOS Genet. 2014;10(3):e1004254.
  • Dash S, Singh A, Bhatia A, et al. Evaluation of bovine high-density SNP genotyping array in indigenous dairy cattle breeds. Anim Biotechnol. 2018;29(2):129–135.
  • Chang CC, Chow CC, Tellier LC, Vattikuti S, Purcell SM, Lee J. Second-generation PLINK: rising to the challenge of larger and richer datasets. Gigascience. 2015;4(1):7.
  • Purcell S, Neale B, Todd-Brown K, et al. PLINK: a tool set for whole-genome association and population-based linkage analyses. Am J Hum Genet. 2007;81(3):559–575.
  • Ferenčaković M, Hamzić E, Gredler B, et al. Estimates of autozygosity derived from runs of homozygosity: empirical evidence from selected cattle populations. J Anim Breed Genet. 2013;130(4):286–293.
  • Kirin M, McQuillan R, Franklin CS, Campbell H, McKeigue PM, Wilson JF. Genomic runs of homozygosity record population history and consanguinity. PLOS One. 2010;5(11):e13996.
  • McQuillan R, Leutenegger AL, Abdel-Rahman R, et al. Runs of homozygosity in European populations. Am J Hum Genet. 2008;83(3):359–372.
  • Dixit S, Singh S, Ganguly I, et al. Genome-wide runs of homozygosity revealed selection signatures in Bos indicus. Front Genet. 2020;11:92.
  • Mastrangelo S, Sardina M, Tolone M, et al. Genome-wide identification of runs of homozygosity islands and associated genes in local dairy cattle breeds. Animal. 2018;12(12):2480–2488.
  • Mastrangelo S, Tolone M, Sardina MT, et al. Genome-wide scan for runs of homozygosity identifies potential candidate genes associated with local adaptation in Valle del Belice sheep. Genet Sel. 2017;49(1):1–10.
  • Zhao G, Zhang T, Liu Y, et al. Genome-wide assessment of runs of homozygosity in Chinese wagyu beef cattle. Anim. 2020;10(8):1425.
  • Peripolli E, Stafuzza NB, Munari DP, et al. Assessment of runs of homozygosity islands and estimates of genomic inbreeding in Gyr (Bos indicus) dairy cattle. Anim Genet. 2018;19(1):1–13.
  • Nothnagel M, Lu TT, Kayser M, Krawczak M. Genomic and geographic distribution of SNP-defined runs of homozygosity in Europeans. Hum Mol Genet. 2010;19(15):2927–2935.
  • Quilez J, Short AD, Martínez V, et al. A selective sweep of >8 Mb on chromosome 26 in the Boxer genome. BMC Genom. 2011;12(1):1–12.
  • Ramey HR, Decker JE, McKay SD, Rolf MM, Schnabel RD, Taylor JF. Detection of selective sweeps in cattle using genome-wide SNP data. BMC Genom. 2013;14(1):1–18.
  • Saravanan K, Panigrahi M, Kumar H, et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics. 2021;113(3):955–963.
  • Makanjuola BO, Maltecca C, Miglior F, et al. Identification of unique ROH regions with unfavorable effects on production and fertility traits in Canadian Holsteins. Genet Sel Evol. 2021;53(1):1–11.
  • Ogorevc J, Kunej T, Razpet A, Dovc P. Database of cattle candidate genes and genetic markers for milk production and mastitis. Anim Genet. 2009;40(6):832–851.
  • Liu M, Li M, Wang S, et al. Association analysis of bovine Foxa2 gene single sequence variant and haplotype combinations with growth traits in Chinese cattle. Gene. 2014;536(2):385–392.
  • Kukučková V, Moravčíková N, Ferenčaković M, et al. Genomic characterization of Pinzgau cattle: genetic conservation and breeding perspectives. Conserv Genet. 2017;18(4):893–910.
  • Nalepa G, Rolfe M, Harper JW. Drug discovery in the ubiquitin-proteasome system. Nat Rev Drug Discov. 2006;5(7):596–613.
  • Sadri H, Giallongo F, Hristov A, et al. Effects of slow-release urea and rumen-protected methionine and histidine on mammalian target of rapamycin (mTOR) signaling and ubiquitin proteasome-related gene expression in skeletal muscle of dairy cows. J Dairy Sci. 2016;99(8):6702–6713.
  • Silva DB, Fonseca LF, Pinheiro DG, et al. Spliced genes in muscle from Nelore cattle and their association with carcass and meat quality. Sci Rep. 2020;10(1):1–13.
  • Ranganathan S, Simpson KJ, Shaw DC, Nicholas KR. The whey acidic protein family: a new signature motif and three-dimensional structure by comparative modeling. J Mol Graph. 1999;17(2):106–113.
  • Bingle L, Singleton V, Bingle CD. The putative ovarian tumour marker gene HE4 (WFDC2), is expressed in normal tissues and undergoes complex alternative splicing to yield multiple protein isoforms. Oncogene. 2002;21(17):2768–2773.
  • Clauss A, Persson M, Lilja H, Lundwall Å. Three genes expressing Kunitz domains in the epididymis are related to genes of WFDC-type protease inhibitors and semen coagulum proteins in spite of lacking similarity between their protein products. BMC Biochem. 2011;12(1):55.
  • Kirchhoff C, Habben I, Ivell R, Krull N. A major human epididymis-specific cDNA encodes a protein with sequence homology to extracellular proteinase inhibitors. Biol Reprod. 1991;45(2):350–357.
  • Kirchhoff C, Osterhoff C, Pera I, Schröter SJ. Function of human epididymal proteins in sperm maturation. Andrologia. 1998;30(4–5):225–232.
  • Moon S, Lee JW, Shin D, et al. A genome-wide scan for selective sweeps in racing horses. Asian-Australas J Anim Sci. 2015;28(11):1525–1531.
  • Fang X, Zhao Z, Jiang P, Yu H, Xiao H, Yang R. Identification of the bovine HSL gene expression profiles and its association with fatty acid composition and fat deposition traits. Meat Sci. 2017;131:107–118.
  • Jiang P, Xia L, Jin Z, et al. New function of the CD44 gene: lipid metabolism regulation in bovine mammary epithelial cells. J Dairy Sci. 2020;103(7):6661–6671.
  • Gao Y, Li S, Lai Z, et al. Analysis of long non-coding RNA and mRNA expression profiling in immature and mature bovine (Bos taurus) testes. Front Genet. 2019;10:646.
  • Liu S, Zhang J, Kherraf ZE, et al. CFAP61 is required for sperm flagellum formation and male fertility in human and mouse. bioRxiv. 2021.
  • Ropka-Molik K, Żukowski K, Eckert R, et al. Whole transcriptome analysis of the porcine muscle tissue of breeds differing in muscularity and meat quality traits. Livest Sci. 2015;182:93–100.
  • Carvalho M, Baldi F, Santana M, et al. Identification of genomic regions related to tenderness in Nellore beef cattle. Adv Anim Vet Sci. 2017;8(s1):s42–s44.
  • De León C, Manrique C, Martínez R, Rocha J. Genomic association study for adaptability traits in four Colombian cattle breeds. Genet Mol Res. 2019;18:GMR18373.
  • Sharma U, Banerjee P, Joshi J, Kapoor P, Vijh R. Identification of quantitative trait loci for fat percentage in buffaloes. Indian J Anim Sci. 2018;88:714–723.
  • Illa SK, Mukherjee S, Nath S, Mukherjee A. Genome-wide scanning for signatures of selection revealed the putative genomic regions and candidate genes controlling milk composition and coat color traits in Sahiwal cattle. Front Genet. 2021;12:699422.
  • MacLean JA II. Ruminant Trophoblast Kunitz Domain Proteins. Missouri (MO): University of Missouri-Columbia; 2000.
  • Chen Z, Yao Y, Ma P, Wang Q, Pan Y. Haplotype-based genome-wide association study identifies loci and candidate genes for milk yield in Holsteins. PLOS One. 2018;13(2):e0192695.
  • Oliveira M, Mello B, Gonella-Diaza A, et al. Unravelling the role of 17β-estradiol on advancing uterine luteolytic cascade in cattle. Domest Anim Endocrinol. 2022;78:106653.
  • Sorbolini S, Marras G, Gaspa G, et al. Detection of selection signatures in Piemontese and Marchigiana cattle, two breeds with similar production aptitudes but different selection histories. Genet Sel. 2015;47(1):1–13.
  • Zhang W, Yang F, Zhu Z, et al. Cellular DNAJA3, a novel VP1-interacting protein, inhibits foot-and-mouth disease virus replication by inducing lysosomal degradation of VP1 and attenuating its antagonistic role in the beta interferon signaling pathway. J Virol. 2019;93(13):e00588-19.
  • Mohammadi A, Alijani S, Rafat SA, Abdollahi-Arpanahi R. Genome-wide association study and pathway analysis for female fertility traits in Iranian Holstein cattle. Ann Anim Sci. 2020;20(3):825–851.
  • Boitard S, Paris C, Sevane N, Servin B, Bazi-Kabbaj K, Dunner S. Gene banks as reservoirs to detect recent selection: the example of the Asturiana de los Valles bovine breed. Front Genet. 2021;12:575405.
  • Li H. Patterns of Genomic Variation and Whole Genome Association Studies of Economically Important Traits in Cattle; 2012.
  • Caroni P, Rothenfluh A, McGlynn E, Schneider C. S-cyclophilin. New member of the cyclophilin family associated with the secretory pathway. J Biol Chem. 1991;266(17):10739–10742.
  • Carlton J, Bujny M, Peter BJ, et al. Sorting nexin-1 mediates tubular endosome-to-TGN transport through coincidence sensing of high- curvature membranes and 3-phosphoinositides. Curr Biol. 2004;14(20):1791–1800.
  • Haft CR, de la Luz Sierra M, Barr VA, Haft DH, Taylor SI. Identification of a family of sorting nexin molecules and characterization of their association with receptors. Mol Cell Biol. 1998;18(12):7278–7287.
  • Tizioto PC, Decker JE, Taylor JF, et al. Genome scan for meat quality traits in Nelore beef cattle. Physiol Genomics. 2013;45(21):1012–1020. doi:10.1152/physiolgenomics.00066.2013.
  • Sun SX, Zhang LJ, Wang CF, Zhong JF, Li Q, Zhang JB. Study on genetic diagnosis for IRAK2 gene associated with mastitis in Chinese Holstein cattle. Heilongjiang Ann Sci Vet Med. 2012;21:94–96.
  • Lin S, Wan Z, Zhang J, Xu L, Han B, Sun D. Genome-wide association studies for the concentration of albumin in colostrum and serum in Chinese Holstein. Animals. 2020;10(12):2211.
  • Zhou X, Zhuang Z, Wang W, et al. OGG1 is essential in oxidative stress induced DNA demethylation. Cell Signal. 2016;28(9):1163–1171.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.