687
Views
2
CrossRef citations to date
0
Altmetric
Review

Genes related to heat tolerance in cattle—a review

, , , ORCID Icon & ORCID Icon

References

  • Garrett AT, Goosens NG, Rehrer NJ, Patterson MJ, Cotter JD. Erratum to: induction and decay of short-term heat acclimation. Eur J Appl Physiol. 2009;107(6):671–671.
  • Solomon S, Qin D, Manning M, Chen Z, Marquis M. 2007. Summary for policymakers. In: Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC).
  • Sherratt A. Transhumance and Pastoralism ǁ The secondary exploitation of animals in the old world. World Archaeol. 1983;15(1):90–104.
  • Zhang H, Paijmans JL, Chang F, et al. Morphological and genetic evidence for early Holocene cattle management in northeastern China. Nat Commun. 2013;4:2755.
  • Scherf BD, Fao R, Pilling D. 2015. The Second Report on the State of the World's Animal Genetic Resources for Food and Agriculture.
  • Elsik CG, Tellam RL, Worley KC, et al. The genome sequence of taurine cattle: a window to ruminant biology and evolution. Science. 2009;324(5926):522–528.
  • Hiendleder S, Lewalski H, Janke A. Complete mitochondrial genomes of Bos taurus and Bos indicus provide new insights into intra-species variation, taxonomy and domestication. Cytogenet Genome Res. 2008;120(1–2):150–156.
  • Canavez FC, Luche DD, Stothard P, et al. Genome sequence and assembly of Bos indicus. J Hered. 2012;103(3):342–348. doi:10.1093/jhered/esr153.
  • Porto-Neto LR, Sonstegard TS, Liu GE, et al. Genomic divergence of zebu and taurine cattle identified through high-density SNP genotyping. BMC Genomics. 2013;14(1):876.
  • Hamid MA, Rahman A, Zaman MA, Hossain KM. Cattle genetic resources and their conservation in Bangladesh. Asian J Anim Sci. 2017;11(2):54–64.
  • Lemecha H, Mulatu W, Hussein I, et al. Response of four indigenous cattle breeds to natural tsetse and trypanosomosis challenge in the Ghibe valley of Ethiopia. Vet Parasitol. 2006;141(1–2):165–176.
  • Mwai O, Hanotte O, Kwon Y-J, Cho S. African indigenous cattle: unique genetic resources in a rapidly changing world. Asian Australas J Anim Sci. 2015;28(7):911–921.
  • Hansen PJ. Physiological and cellular adaptations of zebu cattle to thermal stress. Anim Reprod Sci. 2004;82–83:349–360.
  • Hutchinson JC, Brown GD. Penetrance of cattle coats by radiation. J Appl Physiol. 1969;26(4):454–464.
  • Nay T, Hayman RH. Sweat glands in Zebu (Bos indicus L.) and European (B. taurus L.) cattle. I. Size of individual glands, the denseness of their population, and their depth below the skin surface. Aust J Agric Res. 1956;7(5):482.
  • Pereira AMF, Titto EL, Infante P, et al. Evaporative heat loss in Bos taurus: do different cattle breeds cope with heat stress in the same way? J Therm Biol. 2014;45:87–95.
  • Cai D, Sun Y, Tang Z, et al. The origins of Chinese domestic cattle as revealed by ancient DNA analysis. J Archaeol Sci. 2014;41:423–434.
  • Chen S, Lin B-Z, Baig M, et al. Zebu cattle are an exclusive legacy of the south Asia neolithic. Mol Biol Evol. 2010;27(1):1–6.
  • Lai SJ, Liu YP, Liu YX, Li XW, Yao YG. Genetic diversity and origin of Chinese cattle revealed by mtDNA D-loop sequence variation. Mol Phylogenet Evol. 2006;38(1):146–154.
  • Lei CZ, Chen H, Zhang HC, et al. Origin and phylogeographical structure of Chinese cattle. Anim Genet. 2006;37(6):579–582.
  • Wangkumhang P, Wilantho A, Shaw PJ, et al. Genetic analysis of Thai cattle reveals a Southeast Asian indicine ancestry. PeerJ. 2015;3:e1318.
  • Gaughan JB, Mader TL, Holt SM, Sullivan ML, Hahn GL. Assessing the heat tolerance of 17 beef cattle genotypes. Int J Biometeorol. 2010;54(6):617–627.
  • Branton C, Rios G, Evans DL, Farthing BR, Koonce KL. Genotype-climatic and other interaction effects for productive responses in holsteins1,2. J Dairy Sci. 1974;57(7):833–841.
  • Randhawa I, Khatkar MS, Thomson PC, Raadsma HW, William B. A meta-assembly of selection signatures in cattle. PLOS One. 2016;11(4):e0153013.
  • Consortium HM. Genome-wide survey of SNP variation uncovers the genetic structure of cattle breeds. Science. 2009;324(5926):528.
  • Lu D, Miller S, Sargolzaei M, et al. Genome-wide association analyses for growth and feed efficiency traits in beef cattle. J Anim Sci. 2013;91(8):3612–3633.
  • Tani UY, Maria POBA, Stewart ST, et al. Detecting loci under recent positive selection in dairy and beef cattle by combining different genome-wide scan methods. PLOS One. 2013;8(5):e64280.
  • Kristensen TN, Løvendahl P, Berg P, Loeschcke V. Hsp72 is present in plasma from Holstein-Friesian dairy cattle, and the concentration level is repeatable across days and age classes. Cell Stress Chaperones. 2004;9(2):143–149. doi:10.1379/csc-17.1.
  • Fleshner M, Johnson JD. Endogenous extra-cellular heat shock protein 72: releasing signal(s) and function. Int J Hyperthermia. 2005;21(5):457–471. doi:10.1080/02656730500088211.
  • Bonaventura R, Poma V, Costa C, Matranga V. UVB radiation prevents skeleton growth and stimulates the expression of stress markers in sea urchin embryos. Biochem Biophys Res Commun. 2005;328(1):150–157.
  • Chughtai ZS, Rassadi R, Matusiewicz N, Stochaj U. Starvation promotes nuclear accumulation of the hsp70 ssa4p in yeast cells. J Biol Chem. 2001;276(23):20261–20266.
  • Mayer MP, Bukau BJC, Sciences ML. Hsp70 chaperones: cellular functions and molecular mechanism. Cell Mol Life Sci. 2005;62(6):670–684.
  • Zulkifli I, Liew PK, Israf DA, Omar AR, Hair-Bejo MJJoTB. Effects of early age feed restriction and heat conditioning on heterophil/lymphocyte ratios, heat shock protein 70 expression and body temperature of heat-stressed broiler chickens. J Therm Biol. 2003;28(3):217–222.
  • Gaughan JB, Bonner SL, Loxton I, Mader TL. Effects of chronic heat stress on plasma concentration of secreted heat shock protein 70 in growing feedlot cattle. J Anim Sci. 2013;91(1):120–129.
  • Pennarossa G, Maffei S, Rahman MM, Berruti G, Brevini T, Gandolfi FJBoR. Characterization of the constitutive pig ovary heat shock chaperone machinery and its response to acute thermal stress or to seasonal variations. Biol Reprod. 2012;87(5):119.
  • Singh AK, Upadhyay RC, Malakar D, Kumar S, Singh SV. Effect of thermal stress on HSP70 expression in dermal fibroblast of zebu (Tharparkar) and crossbred (Karan-Fries) cattle. J Therm Biol. 2014;43:46–53.
  • Kim J, Hanotte O, Mwai OA, et al. The genome landscape of indigenous African cattle. Genome Biol. 2017;18(1):34.
  • Dong CW, Zhang YB, Zhang QY, Gui JF. Differential expression of three Paralichthys olivaceus hsp40 genes in responses to virus infection and heat shock. Fish Shellfish Immunol. 2006;21(2):146–158.
  • Mycko M, Cwiklinska H, Walczak A, Libert C, Raine C, Selmaj K. A heat shock protein gene (hsp70.1) is critically involved in the generation of the immune response to myelin antigen. Eur J Immunol. 2008;38(7):1999–2013.
  • Behl JD, Verma NK, Tyagi N, Mishra P, Behl R, Joshi BK. The major histocompatibility complex in bovines: a review. ISRN Vet Sci. 2012;2012:872710.
  • Zhang Y, Lei H, Zhang J, Moskophidis D, Mivechi NF. Targeted disruption of HSF1 leads to lack of thermotolerance and defines tissue-specific regulation for stress-inducible hsp molecular chaperones. J Cell Biochem. 2002;86(2):376–393.
  • Pirkkala L, Nykänen P, Sistonen L. Roles of the heat shock transcription factors in regulation of the heat shock response and beyond. FASEB J. 2001;15(7):1118–1131.
  • Shamovsky I, Nudler EJC, Sciences ML. New insights into the mechanism of heat shock response activation. Cell Mol Life Sci. 2008;65(6):855–861.
  • Luft JC, Benjamin IJ, Mestril R, Dix DJ. Heat shock factor 1-mediated thermotolerance prevents cell death and results in G2/M cell cycle arrest. Cell Stress Chaper. 2001;6(4):326–336.
  • Page T, Sikder D, Yang L, et al. Genome-wide analysis of human HSF1 signaling reveals a transcriptional program linked to cellular adaptation and survival. Mol Biosyst. 2006;2(12):627–639.
  • Akerfelt M, Trouillet D, Mezger V, Sistonen L. Heat shock factors at a crossroad between stress and development. Ann N Y Acad Sci. 2007;1113:15–27.
  • Trinklein ND, Murray JI, Hartman SJ, Botstein D, Myers RM. The role of heat shock transcription factor 1 in the genome-wide regulation of the mammalian heat shock response. Mol Biol Cell. 2004;15(3):1254–1261.
  • Douglas P, Baird N, Simic M, et al. Heterotypic signals from neural HSF-1 separate thermotolerance from longevity. Cell Rep. 2015;12(7):1196–1204.
  • Hsu A-L, Murphy CT, Kenyon C. Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science. 2003;300(5622):1142–1145.
  • Li QL, Ju ZH, Huang JM, et al. Two novel SNPs in HSF1 gene are associated with thermal tolerance traits in Chinese Holstein cattle. DNA Cell Biol. 2011;30(4):247–254.
  • Rong Y, Zeng M, Guan X, et al. Association of HSF1 genetic variation with heat tolerance in Chinese cattle. Animals. 2019;9(12):1027.
  • Kappé G, Franck E, Verschuure P, Boelens WC, Leunissen JAM, de Jong WW. The human genome encodes 10 alpha-crystallin-related small heat shock proteins: HspB1-10. Cell Stress Chaper. 2003;8(1):53–61.
  • Bollino D, Aurelian L. Hspb8 (heat shock 22kda protein 8). Atlas Genet Cytogenet Oncol Haematol. 2014;18(12):915.
  • Irobi J, van Impe K, Seeman P, et al. Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat Genet. 2004;36(6):597–601.
  • Taylor RP, Benjamin IJ. Small heat shock proteins: a new classification scheme in mammals. J Mol Cell Cardiol. 2005;38(3):433–444.
  • Fontaine JM, Sun X, Benndorf R, Welsh MJ. Interactions of hsp22 (hspb8) with hsp20, alphab-crystallin, and hspb3. Biochem Biophys Res Commun. 2005;337(3):1006–1011.
  • Sun X, Fontaine JM, Rest JS, Shelden EA, Welsh MJ, Benndorf R. Interaction of human HSP22 (HSPB8) with other small heat shock proteins. J Biol Chem. 2004;279(4):2394–2402.
  • Shemetov AA, Gusev NB. Biochemical characterization of small heat shock protein HspB8 (Hsp22)-Bag3 interaction. Arch Biochem Biophys. 2011;513(1):1–9.
  • Nivon M, Abou-Samra M, Richet E, Guyot B, Arrigo AP, Kretz-Remy C. NF-κB regulates protein quality control after heat stress through modulation of the BAG3-HspB8 complex. J Cell Sci. 2012;125(Pt 5):1141–1151.
  • Verma N, Gupta ID, Verma A, Kumar R, Vineeth MR. Novel SNPs in HSPB8 gene and their association with heat tolerance traits in Sahiwal indigenous cattle. Trop Anim Health Prod. 2015;48:1–6.
  • Bartelt-Kirbach B, Golenhofen N. Reaction of small heat-shock proteins to different kinds of cellular stress in cultured rat hippocampal neurons. Cell Stress Chaperones. 2014;19(1):145–153.
  • Singh A, Kukreti R, Saso L, Kukreti S. Oxidative stress: a key modulator in neurodegenerative diseases. Molecules. 2019;24(8):1583.
  • Sena Laura A, Chandel Navdeep S. Physiological roles of mitochondrial reactive oxygen species. Mol Cell. 2012;48(2):158–167.
  • Silwal P, Kim JK, Kim YJ, Jo EK. Mitochondrial reactive oxygen species: double-edged weapon in host defense and pathological inflammation during infection. Front Immunol. 2020;11:1649.
  • Houston BJ, Brett N, Martin JH, et al. Heat exposure induces oxidative stress and DNA damage in the male germ line. Biol Reprod. 2018;4.
  • Boyd SD, Ullrich MS, Skopp A, Winkler D. Copper sources for sod1 activation. Antioxidants. 2020;9(6):500–500.
  • Girotto S, Cendron L, Bisaglia M, et al. DJ-1 is a copper chaperone acting on SOD1 activation. J Biol Chem. 2014;289(15):10887–10899.
  • Ajroud-Driss S, Siddique T. Sporadic and hereditary amyotrophic lateral sclerosis (ALS). Biochim Biophys Acta. 2015;1852(4):679–684.
  • Shinder GA, Lacourse M-C, Minotti S, Durham HD. Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J Biol Chem. 2001;276(16):12791–12796.
  • Okado-Matsumoto A, Fridovich I. Amyotrophic lateral sclerosis: a proposed mechanism. Proc Natl Acad Sci USA. 2002;99(13):9010–9014.
  • Zeng L, Chen N, Ning Q, et al. PRLH and SOD1 gene variations associated with heat tolerance in Chinese cattle. Anim Genet. 2018;49(5):447–451.
  • Oda H, Kakinuma A. Discovery of prolactin-releasing peptide in the brain. Tanpakushitsu Kakusan Koso Protein Nucleic Acid Enzyme. 1999;44:881.
  • Kitagawa S, Abe N, Sutoh M, et al. Effect of intracerebroventricular injections of prolactin-releasing peptide on prolactin release and stress-related responses in steers. Anim Sci J. 2011;82(2):314–319.
  • Fujimoto M, Sakamoto T, Kanetoh T, Osaka M, Moriyama S. Prolactin-releasing peptide is essential to maintain the prolactin level and osmotic balance in freshwater teleost fish. Peptides. 2006;27(5):1104–1109.
  • Kelly SP, Peter RE. Prolactin-releasing peptide, food intake, and hydromineral balance in goldfish. Am J Physiol Regul Integr Comp Physiol. 2006;291(5):R1474–R1481.
  • Sakamoto T, Fujimoto M, Ando M. Fishy tales of prolactin-releasing peptide. Int Rev Cytol. 2003;225(6):91–130.
  • Littlejohn M, Henty KM, Tiplady K, et al. Functionally reciprocal mutations of the prolactin signalling pathway define hairy and slick cattle. Nat Commun. 2014;5:5861.
  • Bjursell M, Lennerås M, Göransson M, Elmgren A, Bohlooly-Y M. GPR10 deficiency in mice results in altered energy expenditure and obesity. Biochem Biophys Res Commun. 2007;363(3):633–638.
  • Mochiduki A, Xu ZF, Inoue K. Effects of prolactin-releasing peptide (PrRP) on the association of metabolism with stress. Endocr J. 2010;57:S538.
  • Onaka T, Takayanagi Y, Leng G. Metabolic and stress-related roles of prolactin-releasing peptide. Trends Endocrinol Metab. 2010;21(5):287–293.
  • Ashutoshsupa/Sup DBSS, Research JBR. Circadian changes in physiological responses and blood ionized sodium and potassium concentrations under thermal exposure in Tharparkar and Karan Fries heifers. Biol Rhythm Res. 2011;42(2):131–139.
  • Kashyap N, Kumar P, Deshmukh B, et al. Influence of ambient temperature and humidity on atp1a1 gene expression in Tharparkar and Vrindavani cattle. Ind J Anim Res. 2014;48(6):541–544.
  • Xu KY. Activation of (Na+ + K+)-ATPase. Biochem Biophys Res Commun. 2005;338:1669–1677.
  • Dostanic-Larson I, Lorenz JN, Huysse JWV, Neumann JC, Lingrel JBJAJPRICP. Physiological role of the α1- and α2-isoforms of the Na+-K+-ATPase and biological significance of their cardiac glycoside binding site. Am J Physiol Regul Integr Comp Physiol. 2006;290(3):524–528.
  • Choi CY, An KW. Cloning and expression of Na+/K+-atpase and osmotic stress transcription factor 1 mRNA in black porgy, Acanthopagrus schlegeli during osmotic stress. Compar Biochem Physiol B Biochem Mol Biol. 2008;149(1):91–100.
  • Zicha J, Negrin CD, Dobešová Z, et al. Altered Na+-K+ pump activity and plasma lipids in salt-hypertensive Dahl rats: relationship to Atp1a1 gene. Physiol Genomics. 2001;6(2):99–104.
  • Barendse W, Reverter A, Bunch RJ, Harrison BE, Barris W, Thomas MBJG. A validated whole-genome association study of efficient food conversion in cattle. Genetics. 2007;176(3):1893–1905.
  • Liu Y, Li D, Li H, Xuan Z, Wang GJMBR. A novel SNP of the ATP1A1 gene is associated with heat tolerance traits in dairy cows. Mol Biol Rep. 2011;38(1):83–88.
  • Das R, Gupta I, Verma A, et al. Genetic polymorphisms in ATP1A1 gene and their association with heat tolerance in Jersey crossbred cows. India J Dairy Sci. 2015;68:50–54.
  • Liu YX, Zhou X, Li DQ, Cui QW, Wang GL. Association of ATP1A1 gene polymorphism with heat tolerance traits in dairy cattle. Genet Mol Res. 2010;9(2):891–896.
  • Wang G, Kawakami K, Gick G. Divergent signaling pathways mediate induction of Na,K-ATPase alpha1 and beta1 subunit gene transcription by low potassium. Mol Cell Biochem. 2007;294(1–2):73–85.
  • Kimball SR, Farrell PA, Jefferson LS. Invited review: role of insulin in translational control of protein synthesis in skeletal muscle by amino acids or exercise. J Appl Physiol. 2002;93(3):1168–1180.
  • Proud CG. Signalling to translation: how signal transduction pathways control the protein synthetic machinery. Biochem J. 2007;403(2):217–234.
  • Wang X, Proud CG. The mTOR pathway in the control of protein synthesis. Physiology. 2006;21(5):362–369.
  • Guertin DA, Sabatini DM. Defining the role of mTOR in cancer. Cancer Cell. 2007;12(1):9–22.
  • Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471–484.
  • Hay N, Sonenberg NJG. Upstream and downstream of mTOR. Genes Dev. 2004;18(16):1926–1945.
  • Alessi DR, Pearce LR, Garcia-Martinez JM. New insights into mTOR signaling: mTORC2 and beyond. Sci Signal. 2009;2(67):pe27.
  • Goto K, Okuyama R, Sugiyama H, et al. Effects of heat stress and mechanical stretch on protein expression in cultured skeletal muscle cells. Pflugers Arch. 2003;447(2):247–253.
  • Kobayashi T, Goto K, Kojima A, et al. Possible role of calcineurin in heating-related increase of rat muscle mass. Biochem Biophys Res Commun. 2005;331(4):1301–1309.
  • Uehara K, Goto K, Kobayashi T, et al. Heat-stress enhances proliferative potential in rat soleus muscle. JJP. 2004;54(3):263–271.
  • Wei H, Heide RV. Heat stress activates AKT via focal adhesion kinase-mediated pathway in neonatal rat ventricular myocytes. Am J Physiol Heart Circ Physiol. 2008;295(2):H561–H568.
  • Karimaian A, Majidinia M, Baghi HB, Yousefi B. The crosstalk between Wnt/β-catenin signaling pathway with DNA damage response and oxidative stress: implications in cancer therapy. DNA Repair. 2017;51:14–19.
  • Dominick G, Bowman J, Li X, Miller RA, Garcia GGJAC. mTOR regulates the expression of DNA damage response enzymes in long‐lived Snell dwarf, GHRKO, and PAPPA‐KO mice. Aging Cell. 2017;16(1):52–60.
  • Jirimutu Wang Z, Ding G, Chen G, et al. Correction: Corrigendum: genome sequences of wild and domestic Bactrian camels. Nat Commun. 2013;4:2089.
  • Taniguchi CM, Emanuelli B, Kahn CR. Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol. 2006;7(2):85–96.
  • Chen N, Fu W, Zhao J, Shen J, Jiang Y. 2019. The Bovine Genome Variation Database (BGVD): Integrated Web-database for Bovine Sequencing Variations and Selective Signatures.
  • Ning Q, Qu K, Hanif Q, et al. 2019. MTOR variation related to heat resistance of Chinese cattle. 9.
  • Jing D, Harding HP, Raught B, et al. Activation of gcn2 in UV-irradiated cells inhibits translation. Curr Biol. 2002;12(15):1279–1286.
  • Taniuchi S, Miyake M, Tsugawa K, Oyadomari M, Oyadomari S. Integrated stress response of vertebrates is regulated by four eIF2α kinases. Sci Rep. 2016;6(1):32886.
  • Dever TE, Feng L, Wek RC, Cigan AM, Donahue TF, Hinnebusch AG. Phosphorylation of initiation factor 2 alpha by protein kinase gcn2 mediates gene-specific translational control of gcn4 in yeast. Cell. 1992;68(3):585–596.
  • Wek RC, Jiang HY, Anthony TG. Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 2006;34(Pt 1):7–11.
  • Dever TE. Gene-specific regulation by general translation factors. Cell. 2002;108(4):545–556. doi:10.1016/s0092-8674(02)00642-6.
  • Grousl T, Ivanov P, Frydlova I, et al. Robust heat shock induces eIF2alpha-phosphorylation-independent assembly of stress granules containing eIF3 and 40S ribosomal subunits in budding yeast, Saccharomyces cerevisiae. J Cell Sci. 2009;122(Pt 12):2078–2088.
  • Yoon J, Park K, Hwang DS, Rhee KJMR. Importance of eIF2α phosphorylation as a protective mechanism against heat stress in mouse male germ cells. Mol Reprod Dev. 2017;84(3):265–274.
  • Zhan KJ. Differential activation of eIF2 kinases in response to cellular stresses in schizosaccharomyces pombe. Genetics. 2004168(4):1867–1875.
  • Edea Z, Dadi H, Dessie T, et al. Genome-wide scan reveals divergent selection among taurine and zebu cattle populations from different regions. Anim Genet. 2018;49(6):550–563.
  • Wang K, Cao Y, Rong Y, et al. A novel SNP in EIF2AK4 gene is associated with thermal tolerance traits in Chinese cattle. Animals. 2019;9(6):375.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.