124
Views
0
CrossRef citations to date
0
Altmetric
Articles

A missense mutation (rs209302038) of KRT9 gene associated with heat stress in Chinese cattle

, , , , , , ORCID Icon & ORCID Icon show all

References

  • Ornes S. Core concept: how does climate change influence extreme weather? Impact attribution research seeks answers. Proc Natl Acad Sci U S A. 2018;115(33):8232–8235.
  • Bagath M, Krishnan G, Devaraj C, et al. The impact of heat stress on the immune system in dairy cattle: a review. Res Vet Sci. 2019;126:94–102.
  • Dahl GE, Skibiel AL, Laporta J. In utero heat stress programs reduced performance and health in calves. Vet Clin North Am Food Anim Pract. 2019;35(2):343–353. Jul
  • Zhang M, Dunshea FR, Warner RD, DiGiacomo K, Osei-Amponsah R, Chauhan SS. Impacts of heat stress on meat quality and strategies for amelioration: a review. Int J Biometeorol. 2020;64(9):1613–1628. Sep
  • Cai C, Huang B, Qu K, Zhang J, Lei C. A novel missense mutation within KRT75 gene strongly affects heat stress in Chinese cattle. Gene. 2021;768:145294.
  • Cao Y, Jia P, Wu Z, et al. A novel SNP of MYO1A gene associated with heat-tolerance in Chinese cattle. Anim Biotechnol. 2020;4:1–6.
  • Liu Y, Sun L, Ma X, et al. A novel missense mutation (rs464874590) within BoLA-DOB gene associated with the heat-resistance in Chinese cattle. Gene. 2022;808:145965.
  • Wang K, Cao Y, Rong Y, et al. A novel SNP in gene is associated with thermal tolerance traits in Chinese cattle. Animals. 2019;9(6):375.
  • Huai Q, Zhiyong J, Zhijie C. A survey of cattle production in China. Revue Mondiale de Zootechnie (FAO). 1993.
  • Zhang W, Gao X, Zhang Y, et al. Genome-wide assessment of genetic diversity and population structure insights into admixture and introgression in Chinese indigenous cattle. BMC Genet. 2018;19(1):114.
  • Chan EKF, Nagaraj SH, Reverter A. The evolution of tropical adaptation: comparing taurine and zebu cattle. Anim Genet. 2010;41(5):467–477.
  • Durbin HJ, Lu D, Yampara-Iquise H, Miller SP, Decker JE. Development of a genetic evaluation for hair shedding in American Angus cattle to improve thermotolerance. Genet Sel Evol. 2020;52(1):63.
  • Makina SO, Muchadeyi FC, van Marle-Köster E, Taylor JF, Makgahlela ML, Maiwashe A. Genome-wide scan for selection signatures in six cattle breeds in South Africa. Genet Sel Evol. 2015;47:92.
  • Knapp AC, Franke WW, Heid H, Hatzfeld M, Jorcano JL, Moll R. Cytokeratin No. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificity. J Cell Biol. 1986;103(2):657–667.
  • Langbein L, Heid HW, Moll I, Franke WW. Molecular characterization of the body site-specific human epidermal cytokeratin 9: cDNA cloning, amino acid sequence, and tissue specificity of gene expression. Differentiation. 1993;55(1):57–71.
  • Swensson O, Langbein L, McMillan JR, et al. Specialized keratin expression pattern in human ridged skin as an adaptation to high physical stress. Br J Dermatol. 1998;139(5):767–775.
  • Reis A, Hennies HC, Langbein L, et al. Keratin 9 gene mutations in Epidermolytic Palmoplantar Keratoderma (EPPK). Nat Genet. 1994;6(2):174–179.
  • Lee SH, Miyamoto K, Goto T, Oe T. Non-invasive proteomic analysis of human skin keratins: screening of methionine oxidation in keratins by mass spectrometry. J Proteomics. 2011;75(2):435–449.
  • Andolino C, Hess C, Prince T, Williams H, Chernin M. Drug-induced keratin 9 interaction with Hsp70 in bladder cancer cells. Cell Stress Chaperones. 2018;23(5):1137–1142.
  • Chen N, Fu W, Zhao J, et al. BGVD: an integrated database for bovine sequencing variations and selective signatures. Genomics Proteomics Bioinformatics. 2020;18(2):186–193.
  • Sambrook H. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor, NY: CSHL Press, 1989.
  • Li F, Cai C, Qu K, et al. DGAT1 K232A polymorphism is associated with milk production traits in Chinese cattle. Anim Biotechnol. 2020;13:1–5.
  • Yeh FC. Microsoft window based freeware for population genetic analysis. Popgene Ver. 1999;1:31.
  • Mcdowell RE, Hooven NW, Camoens JK. Effect of Climate on Performance of Holsteins in First Lactation. Journal of Dairy Ence. 1976;59(5):965–971.
  • Bohmanova J, Misztal I, Cole J. Temperature-humidity indices as indicators of milk production losses due to heat stress. J Dairy Sci. 2007;90(4):1947–1956.
  • Yang J, Yan R, Roy A, Xu D, Poisson J, Zhang Y. The I-TASSER Suite: protein structure and function prediction. Nat Methods. 2015;12(1):7–8.
  • Yang J, Wang Y, Zhang Y. ResQ: an approach to unified estimation of B-factor and residue-specific error in protein structure prediction. J Mol Biol. 2016;428(4):693–701.
  • Berman A. An overview of heat stress relief with global warming in perspective. Int J Biometeorol. 2019;63(4):493–498.
  • Delvenne M, Pierard‐Franchimont C, Seidel L, et al. The weather-beaten dorsal hand clinical rating, shadow casting optical profilometry, and skin capacitance mapping. Biomed Res Int. 2013;2013:913646.
  • Devillers C, Pierard GE, Quatresooz P, et al. Environmental dew point and skin and lip weathering. J Eur Acad Dermatol Venereol. 2010;24(5):513–517.
  • Kikuchi K, Kobayashi H, Le Fur I, et al. The winter season affects more severely the facial skin than the forearm skin: comparative biophysical studies conducted in the same Japanese females in later summer and winter. Exog Dermatol. 2002;1(1):32–38.
  • Nakagawa N, Sakai S, Matsumoto M, et al. Relationship between NMF (lactate and potassium) content and the physical properties of the stratum corneum in healthy subjects. J Invest Dermatol. 2004;122(3):755–763.
  • Sauer GC, Hall JC, eds. Manual of Skin Diseases. Philadelphia, Lippincott-Raven, 1996:23–28.
  • Wolfenson D, Roth Z. Impact of heat stress on cow reproduction and fertility. Animal Frontiers: The Review Magazine of Animal Agriculture. 2019;9(1):32–38.
  • Engebretsen KA, Johansen JD, Kezic S, Linneberg A, Thyssen JP. The effect of environmental humidity and temperature on skin barrier function and dermatitis. J Eur Acad Dermatol Venereol. 2016;30(2):223–249.
  • Fu DJ, Thomson C, Lunny DP, et al. Keratin 9 is required for the structural integrity and terminal differentiation of the palmoplantar epidermis. J Invest Dermatol. 2014;134(3):754–763.
  • Steinert PM. Structure, function, and dynamics of keratin intermediate filaments. J Invest Dermatol. 1993;100(6):729–734.
  • Chen N, Cai Y, Chen Q, et al. Whole-genome resequencing reveals world-wide ancestry and adaptive introgression events of domesticated cattle in East Asia. Nat Commun. 2018;9(1):2337.
  • Gao Y, Gautier M, Ding X, et al. Species composition and environmental adaptation of indigenous Chinese cattle. Sci Rep. 2017;7(1):16196.
  • Hansen PJ. Exploitation of genetic and physiological determinants of embryonic resistance to elevated temperature to improve embryonic survival in dairy cattle during heat stress. Theriogenology. 2007;68(Suppl 1):S242–S249.
  • Xu L, Yang L, Zhu B, et al. Genome-wide scan reveals genetic divergence and diverse adaptive selection in Chinese local cattle. BMC Genomics. 2019;20(1):494.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.