792
Views
3
CrossRef citations to date
0
Altmetric
Reviews

Progress and future perspectives of livestock genomics in India: a mini review

ORCID Icon, ORCID Icon, ORCID Icon, , , & show all

References

  • [DAHD] Department of Animal Husbandry and Dairying. Annual report of department of animal husbandry, dairying & fisheries, ministry of agriculture, Government of India. 2021. Available from: https://dahd.nic.in/sites/default/filess/Annual%20Report%202020-21%20%28English%29_30.06.21%5D.pdf. [Accessed 20 December 2021].
  • Gowane GR, Kumar A, Nimbkar C. Challenges and opportunities to livestock breeding programmes in India. J Anim Breed Genet. 2019;136(5):329–338.
  • Smith C, Simpson SP. The use of genetic polymorphisms in livestock improvement. J Anim Breed Genet. 1986;103(1–5):205–217.
  • Venter JC, Adams MD, Myers EW, et al. The sequence of the human genome. Science. 2001;291(5507):1304–1351.
  • International Chicken Genome Sequencing Consortium. Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature. 2004;432(7018):695–716.
  • Tellam RL, Lemay DG, Van Tassell CP, et al. Unlocking the bovine genome. BMC Genomics. 2009;10(1):193.
  • Elsik CG, Unni DR, Diesh CM, et al. Bovine genome database: new tools for gleaning function from the Bos taurus genome. Nucleic Acids Res. 2016;44(D1):D834–D839.
  • Hagen DE, Unni DR, Tayal A, et al. Bovine genome database: tools for mining the Bos taurus genome. Methods Mol Biol. 2018;1757:211–249.
  • Rosen BD, Bickhart DM, Schnabel RD, et al. De novo assembly of the cattle reference genome with single-molecule sequencing. Gigascience. 2020;9(3):giaa021.
  • Wade CM, Giulotto E, Sigurdsson S, et al. Genome sequence, comparative analysis, and population genetics of the domestic Horse. Science. 2009;326(5954):865–867.
  • Archibald AL, Bolund L, Churcher C, et al. Pig genome sequence-analysis and publication strategy. BMC Genomics. 2010;11(1):438.
  • Archibald AL, Cockett NE, Dalrymple BP, et al. The sheep genome reference sequence: a work in progress. Anim Genet. 2010;41(5):449–453.
  • Dong Y, Xie M, Jiang Y, et al. Sequencing and automated whole-genome optical mapping of the genome of a domestic goat (Capra hircus). Nat Biotechnol. 2013;31(2):135–141.
  • Low WY, Tearle R, Bickhart DM, et al. Chromosome-level assembly of the water buffalo genome surpasses human and goat genomes in sequence contiguity. Nat Commun. 2019;10(1):260.
  • Canavez FC, Luche DD, Stothard P, et al. Genome sequence and assembly of Bos indicus. J Hered. 2012;103(3):342–348.
  • Ananthasayanam S, Kothandaraman H, Nayee N, et al. First near complete haplotype phased genome assembly of River buffalo (Bubalus bubalis). BioRxiv. 2019.
  • Matukumalli LK, Lawley CT, Schnabel RD, et al. Development and characterization of a high density SNP genotyping assay for cattle. Toland AE, editor. PLOS One. 2009;4(4):e5350.
  • [NBAGR] National Bureau of Animal Genetic Resources. Registered breeds of livestock. 2020. Available from: https://nbagr.icar.gov.in/. [Accessed 20 December 2021].
  • Srivastava AK. Conservation of indigenous cattle breeds. J Animal Res. 2019;9(1):1–12.
  • Saravanan KA, Panigrahi M, Kumar H, Bhushan B. Advanced software programs for the analysis of genetic diversity in livestock genomics: a mini review. Biol Rhythm Res. 2019;50:1–11.
  • Mukesh M, Sodhi M, Bhatia S, Mishra BP. Genetic diversity of Indian native cattle breeds as analysed with 20 microsatellite loci. J Anim Breed Genet. 2004;121(6):416–424.
  • Sodhi M, Mukesh M, Ahlawat SPS, et al. Genetic diversity and structure of two prominent zebu cattle breeds adapted to the arid region of India inferred from microsatellite polymorphism. Biochem Genet. 2008;46(3–4):124–136.
  • Sharma R, Pandey AK, Singh Y, et al. Evaluation of genetic variation and phylogenetic relationship among North Indian cattle breeds. Asian Australas J Anim Sci. 2009;22(1):13–19.
  • Radhika G, Aravindakshan TV, Jinty S, Ramya K. Evaluation of genetic diversity, population structure, and relationship between legendary Vechur cattle and crossbred cattle of Kerala state, India. Anim Biotechnol. 2018;29(1):50–58.
  • Arora R, Lakhchaura BD, Prasad RB, Tantia MS, Vijh RK. Genetic diversity analysis of two buffalo populations of northern India using microsatellite markers. J Anim Breed Genet. 2004;121(2):111–118.
  • Kataria RS, Sunder S, Malik G, et al. Genetic diversity and bottleneck analysis of Nagpuri buffalo breed of India based on microsatellite data. Russ J Genet. 2009;45(7):826–832.
  • Arora R, Bhatia S. Genetic diversity of magra sheep from India using microsatellite analysis. Asian Australas J Anim Sci. 2006;19(7):938–942.
  • Kumar D, Sharma R, Pandey AK, et al. Genetic diversity and bottleneck analysis of Indian Bellary Sheep by microsatellite markers. Russ J Genet. 2007;43(9):996–1005.
  • Kumar S, Dixit SP, Verma NK, et al. Genetic diversity analysis of the gohilwari breed of Indian goat (Capra hircus) using microsatellite markers. Am J Anim Vet Sciences. 2009;4(3):49–57.
  • Dixit SP, Verma NK, Aggarwal RAK, et al. Genetic diversity and relationship among southern Indian goat breeds based on microsatellite markers. Small Rumin Res. 2010;91(2–3):153–159.
  • Radhika G, Raghavan KC, Aravindakshan TV, Thirupathy V. Genetic diversity and population structure analysis of native and crossbred goat genetic groups of Kerala, India. Small Rumin Res. 2015;131:50–57.
  • Behl R, Sheoran N, Behl J, Vijh RK. Genetic analysis of Ankamali pigs of India using microsatellite markers and their comparison with other domesticated Indian pig types. J Anim Breed Genet. 2006;123(2):131–135.
  • Zaman G, Chandra SM, Aziz A. Molecular characterization of Meghalaya local pigs (Niang Megha) using microsatellite markers. IJST. 2013;6(10):1–5.
  • Sharma R, Kishore A, Mukesh M, et al. Genetic diversity and relationship of Indian cattle inferred from microsatellite and mitochondrial DNA markers. BMC Genet. 2015;16(1):73.
  • Pramod RK, Velayutham D, Sajesh PK, et al. Complete mitogenome reveals genetic divergence and phylogenetic relationships among Indian cattle (Bos indicus) breeds. Anim Biotechnol. 2019;30(3):219–232.
  • Sharma R, Ahlawat S, Sharma H, et al. Microsatellite and mitochondrial DNA analyses unveil the genetic structure of native sheep breeds from three major agro-ecological regions of India. Sci Rep. 2020;10(1):20422.
  • Diwedi J, Singh AW, Ahlawat S, et al. Comprehensive analysis of mitochondrial DNA based genetic diversity in Indian goats. Gene. 2020;756:144910.
  • Dash S, Singh A, Bhatia AK, et al. Evaluation of bovine high-density SNP genotyping array in indigenous dairy cattle breeds. Anim Biotechnol. 2018;29(2):129–135.
  • Malik AA, Sharma R, Ahlawat S, et al. Analysis of genetic relatedness among Indian cattle (Bos indicus) using genotyping-by-sequencing markers. Anim Genet. 2018;49(3):242–245.
  • Saravanan KA, Panigrahi M, Kumar H, et al. Genome-wide assessment of genetic diversity, linkage disequilibrium and haplotype block structure in Tharparkar cattle breed of India. Anim Biotechnol. 2020;1–15. https://doi.org/10.1080/10495398.2020.1796696
  • Nayee N, Sahana G, Gajjar S, et al. Suitability of existing commercial single nucleotide polymorphism chips for genomic studies in Bos indicus cattle breeds and their Bos taurus crosses. J Anim Breed Genet. 2018;135(6):432–441.
  • Chhotaray S, Panigrahi M, Pal D, et al. Genome-wide estimation of inbreeding coefficient, effective population size and haplotype blocks in Vrindavani crossbred cattle strain of India. Biol Rhythm Res. 2021;52(5):666–679.
  • Ahmad SF, Panigrahi M, Chhotaray S, et al. Population structure and admixture analysis in Frieswal crossbred cattle of India – a pilot study. Anim Biotechnol. 2020;31(1):86–92.
  • Ahmad SF, Panigrahi M, Chhotaray S, et al. Revelation of genomic breed composition in a crossbred cattle of India with the help of Bovine50K BeadChip. Genomics. 2020;112(2):1531–1535.
  • Chhotaray S, Panigrahi M, Pal D, et al. Ancestry informative markers derived from discriminant analysis of principal components provide important insights into the composition of crossbred cattle. Genomics. 2020;112(2):1726–1733.
  • Kumar H, Panigrahi M, Chhotaray S, et al. Identification of breed-specific SNP panel in nine different cattle genomes. Biomed Res. 2019;30(1):0970–938X.
  • Kumar H, Panigrahi M, Chhotaray S, et al. Comparative analysis of five different methods to design a breed-specific SNP panel for cattle. Anim Biotechnol. 2021;32(1):130–136.
  • Kumar H, Panigrahi M, Saravanan KA, et al. SNPs with intermediate minor allele frequencies facilitate accurate breed assignment of Indian Tharparkar cattle. Gene. 2021;777:145473.
  • Kumar H, Panigrahi M, Rajawat D, et al. Selection of breed-specific SNPs in three Indian sheep breeds using ovine 50 K array. Small Rumin Res. 2021;205:106545.
  • Mukherjee A, Mukherjee S, Longkumer I, et al. Genomic characterization of Mithun (Bos frontalis) populations using high density SNP array. Indian J Genet Plant Breed. 2019;79(01S):1–7.
  • Sivalingam J, Vineeth MR, Surya T, et al. Genomic divergence reveals unique populations among Indian Yaks. Sci Rep. 2020;10(1):3636.
  • Kumar H, Panigrahi M, Saravanan KA, et al. Genome-wide detection of copy number variations in Tharparkar cattle. Anim Biotechnol. 2021;1–8. https://doi.org/10.1080/10495398.2021.1942027
  • Bhanuprakash V, Chhotaray S, Pruthviraj DR, et al. Copy number variation in livestock: a mini review. Vet World. 2018;11(4):535–541.
  • Vineeth MR, Surya T, Sivalingam J, et al. Genome-wide discovery of SNPs in candidate genes related to production and fertility traits in Sahiwal cattle. Trop Anim Health Prod. 2020;52(4):1707–1715.
  • Surya T, Vineeth MR, Sivalingam J, et al. Genomewide identification and annotation of SNPs in Bubalus bubalis. Genomics. 2019;111(6):1695–1698.
  • Wara AB, Kumar A, Singh A, et al. Genome wide association study of test day’s and 305 days milk yield in crossbred cattle. Indian J Anim Sci. 2019;89:861–865.
  • Singh A, Kumar A, Gondro C, et al. Identification of genes affecting milk fat and fatty acid composition in Vrindavani crossbred cattle using 50 K SNP-Chip. Trop Anim Health Prod. 2021;53(3):347.
  • Kour A, Deb SM, Nayee N, et al. Novel insights into genome-wide associations in Bos indicus reveal genetic linkages between fertility and growth. Anim Biotechnol. 2021;1–17. https://doi.org/10.1080/10495398.2021.1932520
  • Karthikeyan A, Kumar A, Chaudhary R, et al. Genome-wide association study of birth weight and pre-weaning body weight of crossbred pigs. Indian J Anim Sci. 2020;90(2):195–200.
  • Mehrotra A, Bhushan B, Kumar A, et al. A 1.6 Mb region on SSC2 is associated with antibody response to classical swine fever vaccination in a mixed pig population. Anim Biotechnol. 2021;1–6. https://doi.org/10.1080/10495398.2021.1873145
  • Chhotaray S, Panigrahi M, Bhushan B, et al. Genome-wide association study reveals genes crucial for coat color production in Vrindavani cattle. Livest Sci. 2021;247:104476.
  • Kour A, Deb SM, Nayee N, et al. Understanding the genomic architecture of clinical mastitis in Bos indicus. 3 Biotech. 2021;11(11):466.
  • Vohra V, Chhotaray S, Gowane G, et al. Genome-wide association studies in Indian Buffalo revealed genomic regions for lactation and fertility. Front Genet. 2021;12:696109.
  • Jaiswal S, Jagannadham J, Kumari J, et al. Genome wide prediction, mapping and development of genomic resources of mastitis associated genes in water buffalo. Front Vet Sci. 2021;8:593871.
  • Dixit SP, Singh S, Ganguly I, et al. Genome-wide runs of homozygosity revealed selection signatures in Bos indicus. Front Genet. 2020;11:92.
  • Singh A, Mehrotra A, Gondro C, et al. Signatures of selection in composite Vrindavani cattle of India. Front Genet. 2020;11:589496.
  • Bhardwaj S, Singh S, Ganguly I, et al. Genome-wide diversity analysis for signatures of selection of Bos indicus adaptability under extreme agro-climatic conditions of temperate and tropical ecosystems. Animal Gene. 2021;20:200115.
  • Dixit SP, Bhatia AK, Ganguly I, et al. Genome analyses revealed genetic admixture and selection signatures in Bos indicus. Sci Rep. 2021;11(1):21924.
  • Illa SK, Mukherjee S, Nath S, Mukherjee A. Genome-wide scanning for signatures of selection revealed the putative genomic regions and candidate genes controlling milk composition and coat color traits in Sahiwal cattle. Front Genet. 2021;12:699422.
  • Saravanan KA, Panigrahi M, Kumar H, et al. Genomic scans for selection signatures revealed candidate genes for adaptation and production traits in a variety of cattle breeds. Genomics. 2021;113(3):955–963.
  • Rajawat D, Panigrahi M, Kumar H, et al. Identification of important genomic footprints using eight different selection signature statistics in domestic cattle breeds. Gene. 2022;816:146165.
  • Dutta P, Talenti A, Young R, et al. Whole genome analysis of water buffalo and global cattle breeds highlights convergent signatures of domestication. Nat Commun. 2020;11(1):4739.
  • Ravi Kumar D, Joel Devadasan M, Surya T, et al. Genomic diversity and selection sweeps identified in Indian swamp buffaloes reveals it's uniqueness with riverine buffaloes. Genomics. 2020;112(3):2385–2392.
  • Tyagi SK, Mehrotra A, Singh A, et al. Comparative signatures of selection analyses identify loci under positive selection in the Murrah buffalo of India. Front Genet. 2021;12:673697.
  • Ahmad SF, Mehrotra A, Charles S, Ganai NA. Analysis of selection signatures reveals important insights into the adaptability of high-altitude Indian sheep breed Changthangi. Gene. 2021;799:145809.
  • Eydivandi S, Roudbar MA, Karimi MO, Sahana G. Genomic scans for selective sweeps through haplotype homozygosity and allelic fixation in 14 indigenous sheep breeds from Middle East and South Asia. Sci Rep. 2021;11(1):2834.
  • Saravanan KA, Panigrahi M, Kumar H, et al. Genome-wide analysis of genetic diversity and selection signatures in three Indian sheep breeds. Livest Sci. 2021;243:104367.
  • Mehrotra A, Bhushan B, Karthikeyan A, et al. Genome-wide SNP data unravel the ancestry and signatures of divergent selection in Ghurrah pigs of India. Livest Sci. 2021;250:104587.
  • Saravanan KA, Panigrahi M, Kumar H, et al. Selection signatures in livestock genome: a review of concepts, approaches and applications. Livest Sci. 2020;241:104257.
  • Kaisa K, Kumar H, Saravanan K, et al. Concepts of genomic selection in poultry and its applications. Int J Livest Res. 2020;10(10):32–42.
  • Wiggans GR, Cole JB, Hubbard SM, Sonstegard TS. Genomic selection in dairy cattle: the USDA experience. Annu Rev Anim Biosci. 2017;5(1):309–327.
  • Georges M, Charlier C, Hayes B. Harnessing genomic information for livestock improvement. Nat Rev Genet. 2019;20(3):135–156.
  • Al Kalaldeh M, Swaminathan M, Gaundare Y, et al. Genomic evaluation of milk yield in a smallholder crossbred dairy production system in India. Genet Sel Evol. 2021;53(1):73.
  • Mrode R, Ojango JMK, Okeyo AM, Mwacharo JM. Genomic selection and use of molecular tools in breeding programs for indigenous and crossbred cattle in developing countries: current status and future prospects. Front Genet. 2018;9:694.
  • Gajjar SG, Guldbrandtsen B, Su G, et al. Breed-of-origin specific genomic relationship matrix improves genomic prediction accuracy in crossbred Holstein Friesian cattle in India. In Proceedings of the 11th World Congress on Genetics Applied to Livestock Production. 2018. p. 11–16. http://www.wcgalp.org/proceedings/2018/breed-origin-specific-genomic-relationship-matrix-improves-genomic-prediction
  • Nayee NG, Su G, Gajjar SG, et al. Genomic prediction by single-step genomic BLUP using cow reference population in Holstein crossbred cattle in India. In Proceedings of the World Congress on Genetics Applied to Livestock Production. 2018. http://www.wcgalp.org/proceedings/2018/genomic-prediction-single-step-genomic-blup-using-cow-reference-population-holstein
  • Ducrocq V, Laloe D, Swaminathan M, et al. Genomics for ruminants in developing countries: from principles to practice. Front Genet. 2018;9:251.
  • Hidalgo DC, Swaminathan M, Deshpande PD, et al. Interest and limits of a bovine MD chip to study Bos taurus× Bos indicus crossbred animals in India. In Annual meeting of the European Federation of Animal Science EAAP. 2016. https://hal.inrae.fr/hal-02739618/document
  • Saha S, Nayee N, Shah H, et al. Effect of composition and size of the reference population in genotype imputation efficiency of INDUSCHIP in HF Crossbred cattle. IJDS. 2020;73(3):250–255.
  • Saha S, Nayee N, Shah HA, et al. Efficiency of imputing missing genotypes by INDUSCHIP v2 in HF Crossbred cattle. IJDS. 2021;74(2):138–144.
  • Marshall K, Gibson JP, Mwai O, et al. Livestock genomics for developing countries – African examples in practice. Front Genet. 2019;10:297.
  • Koltes JE, Cole JB, Clemmens R, et al. A vision for development and utilization of high-throughput phenotyping and big data analytics in livestock. Front Genet. 2019;10:1197.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.