285
Views
3
CrossRef citations to date
0
Altmetric
Research Articles

Activated macrophages of CD 163 gene edited pigs generated by direct cytoplasmic microinjection with CRISPR gRNA/Cas9 mRNA are resistant to PRRS virus assault

, , , , , , , & show all

References

  • Wensvoort G. Lelystad virus and the porcine epidemic abortion and respiratory syndrome. Vet Res. 1993;24(2):117–124.
  • Christianson WT, Choi CS, Collins JE, Molitor TW, Morrison RB, Joo HS. Pathogenesis of porcine reproductive and respiratory syndrome virus infection in mid-gestation sows and fetuses. Can J Vet Res. 1993;57(4):262–268.
  • Lager KM, Halbur PG. Gross and microscopic lesions in porcine fetuses infected with porcine reproductive and respiratory syndrome virus. J Vet Diagn Invest. 1996;8(3):275–282.
  • Chung WB, Lin MW, Chang WF, Hsu M, Yang PC. Persistence of porcine reproductive and respiratory syndrome virus in intensive farrow-to-finish pig herds. Can J Vet Res. 1997;61:292–298.
  • Chang CC, Chung WB, Lin MW, et al. Porcine reproductive and respiratory syndrome (PRRS) in Taiwan I. Viral isolation. J Chin Soc Vet Sci. 1993;19:268–276.
  • Neumann EJ, Kliebenstein JB, Johnson CD, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome on swine production in the United States. J Am Vet Med Assoc. 2005;227(3):385–392.
  • Holtkamp DJ, Kliebenstein JB, Neumann EJ, et al. Assessment of the economic impact of porcine reproductive and respiratory syndrome virus on United States pork producers. J Swine Health Prod. 2013;21:72–84.
  • Nieuwenhuis N, Duinhof TF, van Nes A. Economic analysis of outbreaks of porcine reproductive and respiratory syndrome virus in nine sow herds. Vet Rec. 2012;170(9):225.
  • Renken C, Nathues C, Swam H, et al. Application of an economic calculator to determine the cost of porcine reproductive and respiratory syndrome at farm-level in 21 pig herds in Germany. Porcine Health Manag. 2021;7(1):3.
  • Guo XK, Zhang Q, Gao L, Li N, Chen XX, Feng WH. Increasing expression of microRNA 181 inhibits porcine reproductive and respiratory syndrome virus replication and has implications for controlling virus infection. J Virol. 2013;87(2):1159–1171.
  • Meulenberg JJ, Hulst MM, de Meijer EJ, et al. Lelystad virus, the causative agent of porcine epidemic abortion and respiratory syndrome (PEARS), is related to LDV and EAV. Virology. 1993;192(1):62–72.
  • Meulenberg JJ, Petersen den Besten A, de Kluyver E, van Nieuwstadt A, Wensvoort G, Moormann RJ. Molecular characterization of Lelystad virus. Vet Microbiol. 1997;55(1–4):197–202.
  • Wensvoort G, Terpstra C, Pol JM, et al. Mystery swine disease in The Netherlands: the isolation of Lelystad virus. Vet Q. 1991;13(3):121–130.,
  • Collins JE, Benfield DA, Christianson WT, et al. Isolation of swine infertility and respiratory syndrome virus (isolate ATCC VR-2332) in North America and experimental reproduction of the disease in gnotobiotic pigs. J Vet Diagn Invest. 1992;4(2):117–126.
  • Ruedas-Torres I, Rodríguez-G’Omez IM, S’Anchez-Carvajal JM, et al. The jigsaw of PRRSV virulence. Vet Microbiol. 2021;260:109168.
  • Li X, Galliher-Beckley A, Pappan L, et al. Comparison of host immune responses to homologous and heterologous type II porcine reproductive and respiratory syndrome virus (PRRSV) challenge in vaccinated and unvaccinated pigs. Biomed Res Int. 2014;2014:416727.
  • Pileri E, Mateu E. Review on the transmission porcine reproductive and respiratory syndrome virus between pigs and farms and impact on vaccination. Vet Res. 2016;47(1):108.
  • Song S, Bi J, Wang D, Fang L, et al. Porcine reproductive and respiratory syndrome virus infection activates IL-10 production through NF-κB and p38 MAPK pathways in porcine alveolar macrophages. Dev Comp Immunol. 2013;39(3):265–272.
  • Tu CF, Chuang CK, Yang TS. The application of new breeding technology based on gene editing in pig industry. Anim Biosci. 2022.
  • An TQ, Tian ZJ, He YX, et al. Porcine reproductive and respiratory syndrome virus attachment is mediated by the N-terminal domain of the sialoadhesin receptor. Vet Microbiol. 2010;143(2–4):371–378.
  • Delputte PL, Van Breedam W, Delrue I, Oetke C, Crocker PR, Nauwynck HJ. Porcine arterivirus attachment to the macrophage-specific receptor sialoadhesin is dependent on the sialic acid-binding activity of the N-terminal immunoglobulin domain of sialoadhesin. J Virol. 2007;81(17):9546–9550.
  • Jiang Y, Khan FA, Pandupuspitasari NS, et al. Analysis of the binding sites of porcine sialoadhesin receptor with PRRSV. Int J Mol Sci. 2013;14(12):23955–23979.
  • Calvert JG, Slade DE, Shields SL, et al. CD163 expression confers susceptibility to porcine reproductive and respiratory syndrome viruses. J Virol. 2007;81(14):7371–7379.
  • Ma H, Jiang L, Qiao S, et al. The crystal structure of the fifth scavenger receptor cysteine-rich domain of porcine CD163 reveals an important residue involved in porcine reproductive and respiratory syndrome virus infection. J Virol. 2017;91(3):e01897–16.
  • Patton JB, Rowland RR, Yoo D, Chang KO. Modulation of CD163 receptor expression and replication of porcine reproductive and respiratory syndrome virus in porcine macrophages. Virus Res. 2009;140(1–2):161–171.
  • Van Gorp H, Van Breedam W, Van Doorsselaere J, Delputte PL, Nauwynck HJ. Identification of the CD163 protein domains involved in infection of the porcine reproductive and respiratory syndrome virus. J Virol. 2010;84(6):3101–3105.
  • Van Breedam W, Delputte PL, Van Gorp H, et al. Porcine reproductive and respiratory syndrome virus entry into the porcine macrophage. J Gen Virol. 2010;91(Pt 7):1659–1667.
  • Prather RS, Rowland RRR, Ewen C, et al. An intact sialoadhesin (Sn/SIGLEC1/CD169) is not required for attachment/internalization of the porcine reproductive and respiratory syndrome virus. J Virol. 2013;87(17):9538–9546.
  • Tanihara F, Hirata M, Nguyen NT, et al. Generation of CD163-edited pig via electroporation of the CRISPR/Cas9 system into porcine in vitro-fertilized zygotes. Anim Biotechnol. 2021;32(2):147–154.
  • Whitworth KM, Lee K, Benne JA, et al. Use of the CRISPR-Cas9 system to produce genetically engineered pigs from in vitro-derived oocytes and embryos. Biol Reprod. 2014;91(3):78.
  • Yang H, Zhang J, Zhang X, et al. CD163 knockout pigs are fully resistant to highly pathogenic porcine reproductive and respiratory syndrome virus. Antiviral Res. 2018;151:63–70.
  • Xu K, Zhou Y, Mu Y, et al. CD163 and pAPN double-knockout pigs are resistant to PRRSV and TGEV and exhibit decreased susceptibility to PDCoV while maintaining normal production performance. Elife. 2020;9:e57132.
  • Burkard C, Lillico SG, Reid E, et al. Precision engineering for PRRSV resistance in pigs: macrophages from genome edited pigs lacking CD163 SRCR5 domain are fully resistant to both PRRSV genotypes while maintaining biological function. PLoS Pathog. 2017;13(2):e1006206.
  • Wang H, Shen L, Chen J, et al. Deletion of CD163 exon 7 confers resistance to highly pathogenic porcine reproductive and respiratory viruses on pigs. Int J Biol Sci. 2019;15(9):1993–2005.
  • Guo C, Wang M, Zhu Z, et al. Highly efficient generation of pigs harboring a partial deletion of the CD163 SRCR5 domain, which are fully resistant to porcine reproductive and respiratory syndrome virus 2 infection. Front Immunol. 2019;10:1846.
  • Burkard C, Opriessnig T, Mileham AJ, et al. Pigs lacking the scavenger receptor cysteine-rich domain 5 of CD163 are resistant to PRRSV-1 infection. J. Virol. 2018;92:e415–18.
  • Whitworth KM, Rowland RR, Ewen CL, et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat Biotechnol. 2016;34(1):20–22.
  • Whitworth KM, Prather RS. Gene editing as applied to prevention of reproductive porcine reproductive and respiratory syndrome. Mol Reprod Dev. 2017;84(9):926–933.
  • NRC. 2012. National Research Council. Nutrient Requirements of Swine. 11th ed. Washington, DC: The National Academies Press.
  • Su YH, Lin TY, Huang CL, Tu CF, Chuang C. Construction of a CRISPR-Cas9 system for pig genome targeting. Anim Biotechnol. 2015;26(4):279–288.
  • Kaewprom K, Chen YH, Lin CF, Chiou MT, Lin CN. Antiviral activity of thymus vulgaris and Nepeta cataria hydrosols against porcine reproductive and respiratory syndrome virus. Thai J Vet Medi. 2017;47:25–33.
  • Ren YW, Zhang YY, Affara NA, et al. The polymorphism analysis of CD169 and CD163 related with the risk of porcine reproductive and respiratory syndrome virus (PRRSV) infection. Mol Biol Rep. 2012;39(11):9903–9909.
  • Wang F, Qiu H, Zhang Q, Peng Z, Liu B. Association of two porcine reproductive and respiratory syndrome virus (PRRSV) receptor genes, CD163 and SN with immune traits. Mol Biol Rep. 2012;39(4):3971–3976.
  • Niu P, Shabir N, Khatun A, et al. Effect of polymorphisms in the GBP1, Mx1 and CD163 genes on host responses to PRRSV infection in pigs. Vet Microbiol. 2016;182:187–195.
  • Huang G, Liu X, Tang X, et al. Increased neutralizing antibody production and interferon-γ secretion in response to porcine reproductive and respiratory syndrome virus immunization in genetically modified pigs. Front Immunol. 2017;8(1110):1110.
  • Boddicker N, Waide EH, Rowland RR, et al. Evidence for a major QTL associated with host response to porcine reproductive and respiratory syndrome virus challenge. J Anim Sci. 2012;90(6):1733–1746.
  • Boddicker NJ, Bjorkquist A, Rowland RR, Lunney JK, Reecy JM, Dekkers JC. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet Sel Evol. 2014;46:18.
  • Tu CF, Chuang CK, Hsiao KH, et al. Lessening of porcine epidemic diarrhoea virus susceptibility in piglets after editing of the CMP-N-glycolylneuraminic acid hydroxylase gene with CRISPR/Cas9 to nullify N-glycolylneuraminic acid expression. PLoS ONE. 2019;14(5):e0217236.
  • Wells KD, Bardot R, Whitworth KM, et al. Replacement of porcine CD163 scavenger receptor cysteine-rich domain 5 with a CD163- like homolog confers resistance of pigs to genotype 1 but not genotype 2 porcine reproductive and respiratory syndrome virus. J Virol. 2017;91(2):e01521.
  • Petersen GEL, Buntjer J, Hely FS, Byrne TJ, Whitelaw B, Doeschl-Wilson A. Gene editing in farm animals: a step change for eliminating epidemics on our doorstep? bioRxiv. 2021. doi: 10.1101/2021.04.19.440533
  • Abella G, Pagès-Bernaus A, Estany J, Pena RN, Fraile L, Plà-Aragonés LM. Using PRRSV-resilient sows improve performance in endemic infected farms with recurrent outbreaks. Animals. 2021;11(3):740.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.