182
Views
0
CrossRef citations to date
0
Altmetric
Articles

DNA polymorphisms and expression profile of immune and antioxidant genes as biomarkers for reproductive disorders tolerance/susceptibility in Baladi goat

, & ORCID Icon

References

  • Skapetas B, Bampidis V. Goat production in the world: present situation and trends. Livest Res Rural Dev. 2016;28:200.
  • Gall C. Goat breeds around the world. CTA, Margraf/FAO Weikersheim, Germany. 1996. 186.
  • Ashour G, Neama A, Ashmawy Dessouki S, Neama A. Blood hematology, metabolites and hormones in newborn sheep and goat from birth to weaning. Int J Adv Res. 2015;3:1377–1386.
  • Zeder MA, Hesse B. The initial domestication of goats (Capra hircus) in the Zagros Mountains 10,000 years ago. Science. 2000;287(5461):2254–2257.
  • MacHugh DE, Bradley DG. Livestock genetic origins: goats buck the trend. Proc Natl Acad Sci USA. 2001;98(10):5382–5384.
  • Qureshi M. Review of modern strategies to enhance livestock genetic performance: from molecular markers to next-generation sequencing technologies in goats. J Food Agric Environ. 2014;12:752–761.
  • El-Sayed M, Al-Soudy A, Badawy A. Microsatellite markers polymorphism between two Egyptian goat populations (Capra hircus). Egypt J Genetics Cytol. 2016;45(1):89–103.
  • Haftu ABB, Gebrehiwot T. Study on prevalence of gastrointestinal nematodes and coccidian parasites affecting cattle in West Arsi zone, Ormia Regional State, Ethiopia. J Biol Agric Healthcare. 2014;4:32–38.
  • Ahmed J, Ararsa D, Dareje R, Dinaol B, Roba J. Gastrointestinal nematode parasites of small ruminants and anthelmintics efficacy test in sheep of Haramaya District, Eastern Ethiopia. AVS. 2017;5(3):39.
  • El-Shafaey E-S, Ateya A, Ramadan H, et al. Single nucleotide polymorphisms in IL8 and TLR4 genes as candidates for digital dermatitis resistance/susceptibility in Holstein Cattle. Anim Biotechnol. 2017;28(2):131–137.
  • Ran D, Jing Y, Ming-Xing C, et al. DNA polymorphism of introns 1 and 2 of prolactin receptor gene and its association with litter size in goats. Anim Sci Pap Rep. 2011;29:343–350.
  • Sise JA, Penty JM, Montgomery GW, Gootwine E. The duplicated gene copy of the ovine growth hormone gene contains a PvuII polymorphism in the second intron. Anim Genet. 1993;24(4):319–321.
  • Barbieri ME, Manfredi E, Elsen JM, et al. Influence du locus de la caséine α(s1) sur les performances laitières et les paramètres génétiques des chèvres de race Alpine. Genet Sel Evol. 1995;27(5):437–450.
  • Moioli B, D’Andrea M, Pilla F. Candidate genes affecting sheep and goat milk quality. Small Ruminant Res. 2007;68(1–2):179–192.
  • Supakorn C. The important candidate genes in goats – a review. Walailak J Sci Technol 2011;6:17–36.
  • Leymaster K, Freking B. Genetic variations and associations for improving meat production and meat qualities in sheep and goats. In 6th Proceedings of the World Congress on Genetics Applied to Livestock Production; 1998. p. 109–116.
  • Diez-Tascón C, Keane OM, Wilson T, et al. Microarray analysis of selection lines from outbred populations to identify genes involved with nematode parasite resistance in sheep. Physiol Genomics. 2005;21(1):59–69.
  • Darwish A, Ebissy E, Ateya A, El-Sayed A. Single nucleotide polymorphisms, gene expression and serum profile of immune and antioxidant markers associated with postpartum disorders susceptibility in Barki sheep. Anim Biotechnol. 2021;:1–13.
  • Fouda M, Hemeda S, El-Bayomi K, El-Araby I, Ateya A, Hendam B. Genetic polymorphisms in FSHR/ALUI and ESRα/BG1I loci and their association with repeat breeder incidence in buffalo. J Hellenic Vet Med Soc. 2021;72:2869–2878.
  • Al-Sharif M, Radwan H, Hendam B, Ateya A. DNA polymorphisms of FGFBP1, leptin, κ-casein, and αs1-casein genes and their association with reproductive performance in dromedary she-camels. Theriogenology. 2022;178:18–29.
  • Salahuddin M, Siddiqua T, Hasan MN, Rana MS, Azad MAK. Status of housing profile and feeding management of Black Bengal Goats in northern districts of Bangladesh. Asian J Med Biol Res. 2017;3(1):61–65.
  • Bishop SC, Morris CA. Genetics of disease resistance in sheep and goats. Small Rumin Res. 2007;70(1):48–59.
  • Bressani FA, Tizioto PC, Giglioti R, et al. Single nucleotide polymorphisms in candidate genes associated with gastrointestinal nematode infection in goats. Genet Mol Res. 2014;13(4):8530–8536.
  • Fontanesi L, Martelli PL, Beretti F, et al. An initial comparative map of copy number variations in the goat (Capra hircus) genome. BMC Genomics. 2010;11(1):639.
  • Pugh DG, Baird AN. Sheep & goat medicine-E-Book. Maryland Heights, Mo.: Elsevier/Saunders; 2012.
  • Boom R, Sol CJ, Salimans MM, Jansen CL, Dillen P-v, Noordaa J. Rapid and simple method for purification of nucleic acids. J Clin Microbiol. 1990;28(3):495–503.
  • Boesenberg-Smith KA, Pessarakli MM, Wolk DM. Assessment of DNA yield and purity: an overlooked detail of PCR troubleshooting. Clin Microbiol Newsl. 2012;34(1):1–6.
  • Sanger F, Nicklen S, Coulson AR. DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci USA. 1977;74(12):5463–5467.
  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ. Basic local alignment search tool. J Mol Biol. 1990;215(3):403–410.
  • Tamura K, Dudley J, Nei M, Kumar S. MEGA4: Molecular Evolutionary Genetics Analysis (MEGA) software version 4.0. Mol Biol Evol. 2007;24(8):1596–1599.
  • Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 2001;25(4):402–408.
  • Pfaffl MW. A new mathematical model for relative quantification in real-time RT–PCR. Nucleic Acids Res. 2001;29(9):e45–e.
  • Olivier JJ, Cloete SWP, Schoeman SJ, Muller CJC. Performance testing and recording in meat and dairy goats. Small Rumin Res. 2005;60(1–2):83–93.
  • MacKinnon KM, Burton JL, Zajac AM, Notter DR. Microarray analysis reveals difference in gene expression profiles of hair and wool sheep infected with Haemonchus contortus. Vet Immunol Immunopathol. 2009;130(3–4):210–220.
  • Sugimoto M, Fujikawa A, Womack JE, Sugimoto Y. Evidence that bovine forebrain embryonic zinc finger-like gene influences immune response associated with mastitis resistance. Proc Natl Acad Sci USA. 2006;103(17):6454–6459.
  • García-Montoya IA, Cendón TS, Arévalo-Gallegos S, Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim Biophys Acta. 2012;1820(3):226–236.
  • Ateya AI, El-Seady YY, Atwa SM, Merghani BH, Sayed NA. Novel single nucleotide polymorphisms in lactoferrin gene and their association with mastitis susceptibility in Holstein cattle. Genetika. 2016;48(1):199–210.
  • Guo BL, Jiao Y, He C, et al. A novel polymorphism of the lactoferrin gene and its association with milk composition and body traits in dairy goats. Genet Mol Res. 2010;9(4):2199–2206.
  • Nowier AM, Darwish HR, Ramadan SI, Othman OE. Polymorphism of lactoferrin gene in Egyptian goats and its association with milk composition traits in Zaraibi breed. Trop Anim Health Prod. 2020;52(3):1065–1071.
  • Swiderek WP, Bhide MR, Gruszczyńska J, Soltis K, Witkowska D, Mikula I. Toll-like receptor gene polymorphism and its relationship with somatic cell concentration and natural bacterial infections of the mammary gland in sheep. Folia Microbiol. 2006;51(6):647–652.
  • Sharma BS, Leyva I, Schenkel F, Karrow NA. Association of toll-like receptor 4 polymorphisms with somatic cell score and lactation persistency in Holstein Bulls. J Dairy Sci. 2006;89(9):3626–3635.
  • Wang X, Xu S, Gao X, Ren H, Chen J. Genetic polymorphism of TLR4 gene and correlation with mastitis in cattle. J Genet Genomics. 2007;34(5):406–412.
  • Alim D, Fu Y, Wu Z, Zhao S-h, Cao J. Single nucleotide polymorphisms of toll-like receptors and association with haemonchus contortus infection in goats. Pakistan Vet J. 2016;36:286–291.
  • Ruiz-Rodriguez CT, Brandt JR, Oliverio R, et al. Polymorphisms of the toll-like receptor 2 of goats (Capra hircus) may be associated with somatic cell count in milk. Anim Biotechnol. 2017;28(2):112–119.
  • Sbalamurugan T, Kumar P, Shrivastava K, et al. Caprine MHC gene polymorphism and its association with endoparasitic infestation (Haemonchuscontortus) in Indian goat breeds. Turk J Vet Anim Sci. 2021;45(1):93–100.
  • Balamurugan T, Kumar P, Shrivastava K, et al. Genetic polymorphism of microsatellite loci in MHC class II exon 2 gene and its association with endoparasitic infestation, predominantly Haemonchus contortus in Salem black goat. Anim Biotechnol. 2021;9:1–9.
  • Yakan A, Ozkan H, Eraslan A, Ünal N, ÖZbeyaz C. Gene expression levels in some candidate genes for mastitis resistance, milk yield, and milk quality of goats reared under different feeding systems. Turk J Vet Anim Sci. 2018;42:18–28.
  • Pisoni G, Moroni P, Genini S, et al. Differentially expressed genes associated with Staphylococcus aureus mastitis in dairy goats. Vet Immunol Immunopathol. 2010;135(3–4):208–217.
  • Shao C, Wang H, Wang X, et al. Characterization of inflammatory responses by cervical cytology, cytokine expression and ultrastructure changes in a goat subclinical endometritis model. J Vet Med Sci. 2017;79(1):197–205.
  • Raliou M, Dembélé D, Düvel A, et al. Subclinical endometritis in dairy cattle is associated with distinct mRNA expression patterns in blood and endometrium. PLoS One. 2019;14(8):e0220244.
  • Fagundes NS, Rezende AL, Alvarenga PB, et al. Short communication: proinflammatory gene expression relative to the collection technique of endometrial samples from cows with and without subclinical endometritis. J Dairy Sci. 2019;102(6):5511–5517.
  • Asadpour R, Zangiband P, Nofouzi K, Saberivand A. Differential expression of antioxidant genes during clinical mastitis of cow caused by Staphylococcus aureus and Escherichia coli. Vet Arhiv. 2021;91(5):451–458.
  • Saed HAR, Ibrahim HMM, El-Khodery SA, Youssef MA. Relationship between expression pattern of vitamin D receptor, 1 alpha-hydroxylase enzyme, and chemokine RANTES genes and selected serum parameters during transition period in Holstein dairy cows. Vet Rec Open. 2020;7(1):e000339.
  • Ateya A, El-Sayed A, Mohamed R. Gene expression and serum profile of antioxidant markers discriminate periparturient period time in dromedary camels. Mamm Res. 2021;66(4):603–613.
  • Kelly PA, Djiane J, Postel-Vinay M-C, Edery M. The prolactin/growth hormone receptor family. Endocr Rev. 1991;12(3):235–251.
  • Clevenger C, Freier D, Kline J. Prolactin receptor signal transduction in cells of the immune system. J Endocrinol. 1998;157(2):187–197.
  • Chu MX, Mu YL, Fang L, Ye SC, Sun SH. Prolactin receptor as a candidate gene for prolificacy of small tail Han sheep. Anim Biotechnol. 2007;18(1):65–73.
  • Kinsella JE, Whitehead DM. Proteins in whey: chemical, physical, and functional properties. Adv Food Nutr Res. 1989;33:343–438.
  • Yamauchi K, Tomita M, Giehl TJ, Ellison RT. Antibacterial activity of lactoferrin and a pepsin-derived lactoferrin peptide fragment. Infect Immun. 1993;61(2):719–728.
  • Jenssen H, Hancock REW. Antimicrobial properties of lactoferrin. Biochimie. 2009;91(1):19–29.
  • Leon-Sicairos N, Canizalez-Roman A, de la Garza M, et al. Bactericidal effect of lactoferrin and lactoferrin chimera against halophilic Vibrio parahaemolyticus. Biochimie. 2009;91(1):133–140.
  • Eyduran E, Özdemir T, Yazgan K, Keskin S. The effects of lactation rank and period on somatic cell count (SCC) in milks of Holstein cows. J Faculty Vet Med. 2005;16:61–65.
  • Botos I, Segal David M, Davies David R. The structural biology of toll-like receptors. Structure. 2011;19(4):447–459.
  • White SN, Taylor KH, Abbey CA, Gill CA, Womack JE. Haplotype variation in bovine toll-like receptor 4 and computational prediction of a positively selected ligand-binding domain. Proc Natl Acad Sci USA. 2003;100(18):10364–10369.
  • Fujita M, Into T, Yasuda M, et al. Involvement of leucine residues at positions 107, 112, and 115 in a leucine-rich repeat motif of human toll-like receptor 2 in the recognition of diacylated lipoproteins and lipopeptides and Staphylococcus aureus Peptidoglycans. J Immunol. 2003;171:3675–3683.
  • Karrow NA, Goliboski K, Stonos N, Schenkel F, Peregrine A. Genetics of helminth resistance in sheep. Can J Anim Sci. 2014;94(1):1–9.
  • Li M-H, Li K, Kantanen J, Feng Z, Fan B, Zhao S-H. Allelic variations in exon 2 of caprine MHC class II DRB3 gene in Chinese indigenous goats. Small Rumin Res. 2006;66(1–3):236–243.
  • Takada T, Kikkawa Y, Yonekawa H, Amano T. Analysis of goat MHC class II DRA and DRB genes: identification of the expressed gene and new DRB alleles. Immunogenetics. 1998;48(6):408–412.
  • Schook LB, Lamont SJ. The major histocompatibility complex region of domestic animal species. United States: CRC press; 1996.
  • Dukkipati VS, Blair HT, Garrick DJ, Murray A. Ovar-Mhc-ovine major histocompatibility complex: role in genetic resistance to diseases. N Z Vet J. 2006;54(4):153–160.
  • Caverly JM, Diamond G, Gallup JM, Brogden KA, Dixon RA, Ackermann MR. Coordinated expression of tracheal antimicrobial peptide and inflammatory-response elements in the lungs of neonatal calves with acute bacterial pneumonia. Infect Immun. 2003;71(5):2950–2955.
  • Hall TJ, McQuillan C, Finlay EK, O'Farrelly C, Fair S, Meade KG. Comparative genomic identification and validation of β-defensin genes in the Ovis aries genome. BMC Genomics. 2017;18(1):278.
  • Oliva A, Kinter AL, Vaccarezza M, et al. Natural killer cells from human immunodeficiency virus (HIV)-infected individuals are an important source of CC-chemokines and suppress HIV-1 entry and replication in vitro. J Clin Invest. 1998;102(1):223–231.
  • Taub DD, Sayers TJ, Carter CR, Ortaldo JR. Alpha and beta chemokines induce NK cell migration and enhance NK-mediated cytolysis. J Immunol. 1995;155(8):3877–3888.
  • Sozzani S, Luini W, Borsatti A, et al. Receptor expression and responsiveness of human dendritic cells to a defined set of CC and CXC chemokines. J Immunol. 1997;159(4):1993–2000.
  • Tavares E, Miñano FJ. Differential sensitivities of pyrogenic chemokine fevers to CC chemokine receptor 5 antibodies. Fundam Clin Pharmacol. 2004;18(2):163–169.
  • Masella R, Di Benedetto R, Varì R, Filesi C, Giovannini C. Novel mechanisms of natural antioxidant compounds in biological systems: involvement of glutathione and glutathione-related enzymes. J Nutr Biochem. 2005;16(10):577–586.
  • Glasauer A, Chandel NS. Targeting antioxidants for cancer therapy. Biochem Pharmacol. 2014;92(1):90–101.
  • Celi P. The role of oxidative stress in small ruminants' health and production. R Bras Zootec. 2010;39(suppl spe):348–363.
  • Cuschieri J, Maier RV. Oxidative stress, lipid rafts, and macrophage reprogramming. Antioxid Redox Signal. 2007;9(9):1485–1497.
  • Rinaldi M, Moroni P, Paape MJ, Bannerman DD. Evaluation of assays for the measurement of bovine neutrophil reactive oxygen species. Vet Immunol Immunopathol. 2007;115(1–2):107–125.
  • Sordillo LM, Aitken SL. Impact of oxidative stress on the health and immune function of dairy cattle. Vet Immunol Immunopathol. 2009;128(1–3):104–109.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.