365
Views
1
CrossRef citations to date
0
Altmetric
Reviews

Research progress of intramuscular fat formation based on co-culture

, , ORCID Icon, , , , , , & show all

References

  • Khoja SS, Moore CG, Goodpaster BH, Delitto A, Piva SR. Skeletal muscle fat and its association with physical function in rheumatoid arthritis. Arthritis Care Res. 2018;70(3):333–342.
  • Zhang M, Li D, Zhai Y, et al. The landscape of DNA methylation associated with the transcriptomic network of intramuscular adipocytes generates insight into intramuscular fat deposition in chicken. Front Cell Dev Biol. 2020;8:206.
  • Dodson MV, Jiang Z, Chen J, et al. Allied industry approaches to alter intramuscular fat content and composition in beef animals. J Food Sci. 2010;75(1):R1–R8.
  • Wang L, Zhou Z-Y, Zhang T, et al. IRLnc: a novel functional noncoding RNA contributes to intramuscular fat deposition. BMC Genomics. 2021;22(1):5.
  • Cesar ASM, Regitano LCA, Reecy JM, et al. Identification of putative regulatory regions and transcription factors associated with intramuscular fat content traits. BMC Genomics. 2018;19(1):499.
  • Uezumi A, Ito T, Morikawa D, et al. Fibrosis and adipogenesis originate from a common mesenchymal progenitor in skeletal muscle. J Cell Sci. 2011;124(Pt 21):3654–3664.
  • Wang L, Pydi SP, Zhu L, et al. Adipocyte Gi signaling is essential for maintaining whole-body glucose homeostasis and insulin sensitivity. Nat Commun. 2020;11(1):2995.
  • Harwood HJ. Jr. The adipocyte as an endocrine organ in the regulation of metabolic homeostasis. Neuropharmacology. 2012;63(1):57–75.
  • Li Y, Li F, Lin B, Kong X, Tang Y, Yin Y. Myokine IL-15 regulates the crosstalk of co-cultured porcine skeletal muscle satellite cells and preadipocytes. Mol Biol Rep. 2014;41(11):7543–7553.
  • Yamanouchi K, Nakamura K, Takeuchi S, Hosoyama T, Matsuwaki T, Nishihara M. Suppression of MyoD induces spontaneous adipogenesis in skeletal muscle progenitor cell culture. Animal Science Journal. 2021;92(1):13573.
  • Joe AWB, Yi L, Natarajan A, et al. Muscle injury activates resident fibro/adipogenic progenitors that facilitate myogenesis. Nat Cell Biol. 2010;12(2):153–63163.
  • Uezumi A, Fukada S-i, Yamamoto N, Takeda S, Tsuchida K. Mesenchymal progenitors distinct from satellite cells contribute to ectopic fat cell formation in skeletal muscle. Nat Cell Biol. 2010;12(2):143–52152.
  • Seo K, Suzuki T, Kobayashi K, Nishimura T. Adipocytes suppress differentiation of muscle cells in a co-culture system. Anim Sci J. 2019;90(3):423–434.
  • Pandurangan M, Hwang I. Application of cell co-culture system to study fat and muscle cells. Appl Microbiol Biotechnol. 2014;98(17):7359–7364.
  • Zhang Y, Guo W, Wang M, et al. Co-culture systems-based strategies for articular cartilage tissue engineering. J Cell Physiol. 2018;233(3):1940–1951.
  • Hu W, Zhu S, Fanai ML, Wang J, Cai J, Feng J. 3D co-culture model of endothelial colony-forming cells (ECFCs) reverses late passage adipose-derived stem cell senescence for wound healing. Stem Cell Res Ther. 2020;11(1):355.
  • Dodson MV, Vierck JL, Hossner KL, Byrne K, McNamara JP. The development and utility of a defined muscle and fat co-culture system. Tissue Cell. 1997;29(5):517–524.
  • Hausman GJ, Basu U, Du M, Fernyhough-Culver M, Dodson MV. Intermuscular and intramuscular adipose tissues: Bad vs. good adipose tissues. Adipocyte. 2014;3(4):242–255.
  • Reggio A, Rosina M, Palma A, et al. Adipogenesis of skeletal muscle fibro/adipogenic progenitors is affected by the WNT5a/GSK3/β-catenin axis. Cell Death Differ. 2020;27(10):2921–2941.
  • Kopinke D, Roberson EC, Reiter JF. Ciliary hedgehog signaling restricts injury-induced adipogenesis. Cell. 2017;170(2):340–351.e12. +;
  • Liu X, Liu M, Lee L, et al. Trichostatin A regulates fibro/adipogenic progenitor adipogenesis epigenetically and reduces rotator cuff muscle fatty infiltration. J Orthop Res. 2021;39(7):1452–1462.
  • Judson RN, Low M, Eisner C, Rossi FM. Isolation, Culture, and Differentiation of Fibro/Adipogenic Progenitors (FAPs) from Skeletal Muscle. New York, NY: Springer New York; 2017. p. 93–103.
  • Wu L-Y, Chen C-W, Chen L-K, Chou H-Y, Chang C-L, Juan C-C. Curcumin attenuates adipogenesis by inducing preadipocyte apoptosis and inhibiting adipocyte differentiation. Nutrients. 2019;11(10):2307.
  • Sun Y, Chen X, Qin J, et al. Comparative analysis of long noncoding RNAs expressed during intramuscular adipocytes adipogenesis in fat-type and lean-type pigs. J Agric Food Chem. 2018;66(45):12122–12130.
  • Lee H, Lee YJ, Choi H, et al. SCARA5 plays a critical role in the commitment of mesenchymal stem cells to adipogenesis. Sci Rep. 2017;7(1):14833.
  • Kruk ZA, Bottema MJ, Reyes-Veliz L, Forder REA, Pitchford WS, Bottema CDK. Vitamin A and marbling attributes: Intramuscular fat hyperplasia effects in cattle. Meat Sci. 2018;137:139–146.
  • Cristancho AG, Lazar MA. Forming functional fat: a growing understanding of adipocyte differentiation. Nat Rev Mol Cell Biol. 2011;12(11):722–734.
  • Huang W, Guo L, Zhao M, Zhang D, Xu H, Nie Q. The inhibition on MDFIC and PI3K/AKT pathway caused by miR-146b-3p triggers suppression of myoblast proliferation and differentiation and promotion of apoptosis. Cells. 2019;8(7):656.
  • Hutcheson DA, Zhao J, Merrell A, Haldar M, Kardon G. Embryonic and fetal limb myogenic cells are derived from developmentally distinct progenitors and have different requirements for beta-catenin. Genes Dev. 2009;23(8):997–1013.
  • Zhong Z, Zhao H, Mayo J, Chai Y. Different requirements for Wnt Signaling in Tongue myogenic subpopulations. J Dent Res. 2015;94(3):421–429.
  • Tontonoz P, Hu E, Spiegelman BM. Stimulation of adipogenesis in fibroblasts by PPAR gamma 2, a lipid-activated transcription factor. Cell. 1994;79(7):1147–1156.
  • Rosen ED, Sarraf P, Troy AE, et al. PPARγ is required for the differentiation of adipose tissue in vivo and in vitro. Mol Cell. 1999;4(4):611–617.
  • Rosen ED, Hsu C-H, Wang X, et al. C/EBPα induces adipogenesis through PPARγ: a unified pathwayway. Genes Dev. 2002;16(1):22–26.
  • Wu Z, Rosen ED, Brun R, et al. Cross-Regulation of C/EBPα and PPARγ controls the transcriptional pathway of adipogenesis and insulin sensitivity. Molecular Cell. 1999;3(2):151–158.
  • El Ouarrat D, Isaac R, Lee YS, et al. TAZ is a negative regulator of PPARγ activity in adipocytes and TAZ deletion improves insulin sensitivity and glucose tolerance. Cell Metab. 2020;31(1):162–173.e5.
  • Barak Y, Nelson MC, Ong ES, et al. PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol Cell. 1999;4(4):585–595.
  • Lee Y-h, Kim SH, Lee YJ, et al. Transcription factor Snail is a novel regulator of adipocyte differentiation via inhibiting the expression of peroxisome proliferator-activated receptor γ. Cell Mol Life Sci. 2013;70(20):3959–3971.
  • Oishi Y, Manabe I, Tobe K, et al. Krüppel-like transcription factor KLF5 is a key regulator of adipocyte differentiation. Cell Metab. 2005;1(1):27–39.
  • Sun GR, Zhang M, Sun JW, et al. Kruppel-like factor KLF9 inhibits chicken intramuscular preadipocyte differentiation. Br Poult Sci. 2019;60(6):790–797.
  • Luther J, Ubieta K, Hannemann N, et al. Fra-2/AP-1 controls adipocyte differentiation and survival by regulating PPARgamma and hypoxia. Cell Death Differ. 2014;21(4):655–664.
  • Yu K, Mo D, Wu M, et al. ATF4 regulates adipocyte differentiation via altering the coordinate expression of CEBP/β and PPARγ. Febs J. 2014;281(10):2399–2409.
  • Inoue J, Kumagai H, Terada T, Maeda M, Shimizu M, Sato R. Proteolytic activation of SREBPs during adipocyte differentiation. Biochem Biophys Res Commun. 2001;283(5):1157–1161.
  • Hou Y, Xue P, Bai Y, et al. Nuclear factor erythroid-derived factor 2-related factor 2 regulates transcription of CCAAT/enhancer-binding protein beta during adipogenesis. Free Radic Biol Med. 2012;52(2):462–472.
  • Xue P, Hou Y, Zuo Z, et al. Long isoforms of NRF1 negatively regulate adipogenesis via suppression of PPAR gamma expression. Redox Biol. 2020;30:101414.
  • Zang L, Xue B, Lu Z, et al. Identification of LRP16 as a negative regulator of insulin action and adipogenesis in 3T3-L1 adipocytes. Horm Metab Res. 2013;45(5):349–358.
  • Tang XQ, Guilherme A, Chakladar A, et al. An RNA interference-based screen identifies MAP4K4/NIK as a negative regulator of PPAR gamma, adipogenesis, and insulin-responsive hexose transport. Proc Natl Acad Sci U S A. 2006;103(7):2087–2092.
  • Biggs WH, Cavenee WK, Arden KC. Identification and characterization of members of the FKHR (FOX O) subclass of winged-helix transcription factors in the mouse. Mamm Genome. 2001;12(6):416–425.
  • Jacobs FMJ, van der Heide LP, Wijchers PJEC, Burbach JPH, Hoekman MFM, Smidt MP. FoxO6, a Novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem. 2003;278(38):35959–35967.
  • García-Prat L, Perdiguero E, Alonso-Martín S, et al. FoxO maintains a genuine muscle stem-cell quiescent state until geriatric age. Nat Cell Biol. 2020;22(11):1307–1318.
  • Chen B, Guo L, Chen X, et al. Cellular function of chicken FOXO3 and its associations with chicken growth. Poult Sci. 2019;98(10):5109–5117.
  • Zhang X, Liu Q, Zhang X, Guo K, Zhang X, Zhou Z. FOXO3a regulates lipid accumulation and adipocyte inflammation in adipocytes through autophagy. Inflamm Res. 2021;70(5):591–603.
  • Zhu J, Mounzih K, Chehab EF, Mitro N, Saez E, Chehab FF. Effects of FoxO4 overexpression on cholesterol biosynthesis, triacylglycerol accumulation, and glucose uptake. J Lipid Res. 2010;51(6):1312–1324.
  • Mandai S, Mori T, Nomura N, et al. WNK1 regulates skeletal muscle cell hypertrophy by modulating the nuclear localization and transcriptional activity of FOXO4. Sci Rep. 2018;8(1):9101.
  • Abdalla BA, Chen X, Li K, et al. Control of preadipocyte proliferation, apoptosis and early adipogenesis by the forkhead transcription factor FoxO6. Life Sci. 2021;265:118858.
  • Chung SY, Huang WC, Su CW, et al. FoxO6 and PGC-1α form a regulatory loop in myogenic cells. Bioscience Reports. 2013;33(3):e00045.
  • Jing E, Gesta S, Kahn CR. SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation. Cell Metab. 2007;6(2):105–114.
  • Hong J, Mei C, Abbas Raza SH, Khan R, Cheng G, Zan L. SIRT6 cooperates with SIRT5 to regulate bovine preadipocyte differentiation and lipid metabolism via the AMPKα signaling pathway. Arch Biochem Biophys. 2020;681:108260.
  • Pang W, Wang Y, Wei N, et al. Sirt1 inhibits akt2-mediated porcine adipogenesis potentially by direct protein-protein interaction. PLoS One. 2013;8(8):e71576.
  • Shiota A, Shimabukuro M, Fukuda D, et al. Telmisartan ameliorates insulin sensitivity by activating the AMPK/SIRT1 pathway in skeletal muscle of obese db/db mice. Cardiovasc Diabetol. 2012;11(1):139.
  • Hong J, Mei C, Raza SHA, Khan R, Cheng G, Zan L. SIRT5 inhibits bovine preadipocyte differentiation and lipid deposition by activating AMPK and repressing MAPK signal pathways. Genomics. 2020;112(2):1065–1076.
  • Cui X, Yao L, Yang X, et al. SIRT6 regulates metabolic homeostasis in skeletal muscle through activation of AMPK. Am J Physiol Endocrinol Metab. 2017;313(4):E493–E505.
  • Seok HY, Tatsuguchi M, Callis TE, He A, Pu WT, Wang DZ. MiR-155 inhibits expression of the MEF2A protein to repress skeletal muscle differentiation. J Biol Chem. 2011;286(41):35339–35346.
  • Snyder CM, Rice AL, Estrella NL, Held A, Kandarian SC, Naya FJ. MEF2A regulates the Gtl2-Dio3 microRNA mega-cluster to modulate WNT signaling in skeletal muscle regeneration. Development. 2013;140(1):31–42.
  • Feng L, Song YF, Guan QB, et al. Long-term ethanol exposure inhibits glucose transporter 4 expression via an AMPK-dependent pathway in adipocytes. Acta Pharmacol Sin. 2010;31(3):329–340.
  • Qadir AS, Woo KM, Ryoo H-M, Yi T, Song SU, Baek J-H. MiR-124 inhibits myogenic differentiation of mesenchymal stem cells via targeting Dlx5. J Cell Biochem. 2014;115(9):1572–1581.
  • Qadir AS, Woo KM, Ryoo H-M, Baek J-H. Insulin suppresses distal-less homeobox 5 expression through the up-regulation of microRNA-124 in 3T3-L1 cells. Exp Cell Res. 2013;319(14):2125–2134.
  • Chakrabarti P, Kandror KV. FoxO1 controls insulin-dependent Adipose Triglyceride Lipase (ATGL) expression and lipolysis in adipocytes. J Biol Chem. 2009;284(20):13296–13300.
  • Munekata K, Sakamoto K. Forkhead transcription factor Foxo1 is essential for adipocyte differentiation. In Vitro Cell Dev Biol Anim. 2009;45(10):642–651.
  • Baba S, Ueno Y, Kikuchi T, Tanaka R, Fujimori K. A limonoid kihadanin B from ImmatureCitrus unshiu peels suppresses adipogenesis through Repression of the Akt-FOXO1-PPARγ Axis in adipocytes. J Agric Food Chem. 2016;64(51):9607–9615.
  • Stitt TN, Drujan D, Clarke BA, et al. The IGF-1/PI3K/Akt pathway prevents expression of muscle atrophy-induced ubiquitin ligases by inhibiting FOXO transcription factors. Mol Cell. 2004;14(3):395–403.
  • Li Y, Pan H, Zhang X, et al. Geniposide improves glucose homeostasis via regulating FoxO1/PDK4 in skeletal muscle. J Agric Food Chem. 2019;67(16):4483–4492.
  • Nho RS, Hergert P, Kahm J, Jessurun J, Henke C. Pathological alteration of FoxO3a activity promotes idiopathic pulmonary fibrosis fibroblast proliferation on type I collagen matrix. Am J Pathol. 2011;179(5):2420–2430.
  • Underwood KR, Tong J, Zhu MJ, et al. Relationship between Kinase Phosphorylation, Muscle Fiber Typing, and Glycogen Accumulation inLongissimus Muscle of Beef Cattle with High and Low Intramuscular Fat. J Agric Food Chem. 2007;55(23):9698–9703.
  • Underwood KR, Means WJ, Zhu MJ, Ford SP, Hess BW, Du M. AMP-activated protein kinase is negatively associated with intramuscular fat content in longissimus dorsi muscle of beef cattle. Meat Sci. 2008;79(2):394–402.
  • Giri S, Rattan R, Haq E, et al. AICAR inhibits adipocyte differentiation in 3T3L1 and restores metabolic alterations in diet-induced obesity mice model. Nutr Metab. 2006;3:31.
  • Habinowski SA, Witters LA. The effects of AICAR on adipocyte differentiation of 3T3-L1 cells. Biochem Biophys Res Commun. 2001;286(5):852–856.
  • Hwang J-T, Park I-J, Shin J-I, et al. Genistein, EGCG, and capsaicin inhibit adipocyte differentiation process via activating AMP-activated protein kinase. Biochem Biophys Res Commun. 2005;338(2):694–699.
  • Shen X, Liu Z, Cao X, et al. Circular RNA profiling identified an abundant circular RNA circTMTC1 that inhibits chicken skeletal muscle satellite cell differentiation by sponging miR-128-3p. Int J Biol Sci. 2019;15(10):2265–2281.
  • Zhang M, Li F, Sun J-w, et al. LncRNA IMFNCR promotes intramuscular adipocyte differentiation by sponging miR-128-3p and miR-27b-3p. Front Genet. 2019;10:42.
  • Zhang G, He M, Wu P, et al. MicroRNA-27b-3p targets the myostatin gene to regulate myoblast proliferation and is involved in myoblast differentiation. Cells. 2021;10(2):423.
  • Li G, Luo W, Abdalla BA, et al. MiRNA-223 upregulated by MYOD inhibits myoblast proliferation by repressing IGF2 and facilitates myoblast differentiation by inhibiting ZEB1. Cell Death Dis. 2017;8(10):e3094-e.
  • Li F, Li D, Zhang M, et al. MiRNA-223 targets the GPAM gene and regulates the differentiation of intramuscular adipocytes. Gene. 2019;685:106–113.
  • Wang YC, Yao X, Ma M, et al. MiR-130b inhibits proliferation and promotes differentiation in myocytes via targeting Sp1. J Mol Cell Biol. 2021;13(6):422–432.
  • Pan S, Yang X, Jia Y, Li R, Zhao R. Microvesicle-shuttled miR-130b reduces fat deposition in recipient primary cultured porcine adipocytes by inhibiting PPAR-g expression. J Cell Physiol. 2014;229(5):631–639.
  • Song C, Wu G, Xiang A, et al. Over-expression of miR-125a-5p inhibits proliferation in C2C12 myoblasts by targeting E2F3. Acta Biochim Biophys Sin. 2015;47(4):244–249.
  • Li R, Li B, Shen M, et al. LncRNA 2310043L19Rik inhibits differentiation and promotes proliferation of myoblast by sponging miR-125a-5p. Aging. 2020;12(7):5625–5639.
  • Xu Y, Du J, Zhang P, et al. MicroRNA-125a-5p mediates 3T3-L1 preadipocyte proliferation and differentiation. Molecules. 2018;23(2):317.
  • Xu J, Zhang L, Shu G, Wang B. MicroRNA-16-5p promotes 3T3-L1 adipocyte differentiation through regulating EPT1. Biochem Biophys Res Commun. 2019;514(4):1251–1256.
  • Cai B, Ma M, Chen B, et al. MiR-16-5p targets SESN1 to regulate the p53 signaling pathway, affecting myoblast proliferation and apoptosis, and is involved in myoblast differentiation. Cell Death Dis. 2018;9(3):315–367.
  • Muthuraman P. Effect of coculturing on the myogenic and adipogenic marker gene expression. Appl Biochem Biotechnol. 2014;173(2):571–578.
  • Whitham M, Pal M, Petzold T, et al. Adipocyte-specific deletion of IL-6 does not attenuate obesity-induced weight gain or glucose intolerance in mice. Am J Physiol Endocrinol Metab. 2019;317(4):E597–E604.
  • Wolsk E, Mygind H, Gr?ndahl TS, Pedersen BK, van Hall G. IL-6 selectively stimulates fat metabolism in human skeletal muscle. Am J Physiol Endocrinol Metab. 2010;299(5):E832–40E840.
  • Xu H, Hirosumi J, Uysal KT, Guler AD, Hotamisligil GS. Exclusive action of transmembrane TNF alpha in adipose tissue leads to reduced adipose mass and local but not systemic insulin resistance. Endocrinology. 2002;143(4):1502–1511.
  • Haghani K, Pashaei S, Vakili S, Taheripak G, Bakhtiyari S. TNF-α knockdown alleviates palmitate-induced insulin resistance in C2C12 skeletal muscle cells. Biochem Biophys Res Commun. 2015;460(4):977–982.
  • Boucher J, Mori MA, Lee KY, et al. Impaired thermogenesis and adipose tissue development in mice with fat-specific disruption of insulin and IGF-1 signalling. Nat Commun. 2012;3(1):902.
  • Zhang W, Della-Fera MA, Hartzell DL, Hausman D, Baile CA. Adipose tissue gene expression profiles in ob/ob mice treated with leptin. Life Sci. 2008;83(1–2):35–42.
  • Klein S, Coppack SW, Mohamed-Ali V, Landt M. Adipose tissue leptin production and plasma leptin kinetics in humans. Diabetes. 1996;45(7):984–987.
  • Yau SW, Henry BA, Russo VC, et al. Leptin enhances insulin sensitivity by direct and sympathetic nervous system regulation of muscle IGFBP-2 expression: evidence from Nonrodent models. Endocrinology. 2014;155(6):2133–2143.
  • Liu Q, Gauthier MS, Sun L, Ruderman N, Lodish H. Activation of AMP-activated protein kinase signaling pathway by adiponectin and insulin in mouse adipocytes: requirement of acyl-CoA synthetases FATP1 and Acsl1 and association with an elevation in AMP/ATP ratio. Faseb J. 2010;24(11):4229–4239.
  • Sun Y, Geng M, Yuan Y, et al. Lmo4‐resistin signaling contributes to adipose tissue‐liver crosstalk upon weight cycling. Faseb J. 2020;34(3):4732–4748.
  • Karczewska-Kupczewska M, Niko?ajuk A, Stefanowicz M, Matulewicz N, Kowalska I, Str?czkowski M. Serum and adipose tissue chemerin is differentially related to insulin sensitivity. Endocr Connect. 2020;9(5):360–369.
  • Xie Q, Deng Y, Huang C, et al. Chemerin-induced mitochondrial dysfunction in skeletal muscle. J Cell Mol Med. 2015;19(5):986–995.
  • Park S, Lu K-T, Liu X, et al. Allele-specific expression of angiotensinogen in human subcutaneous adipose tissue. Hypertension. 2013;62(1):41–47.
  • Belalcazar LM, Ballantyne CM, Lang W, et al. Metabolic factors, adipose tissue, and plasminogen activator inhibitor-1 levels in type 2 diabetes findings from the look AHEAD study. Arterioscler Thromb Vasc Biol. 2011;31(7):1689–1695.
  • Krause MP, Moradi J, Nissar AA, Riddell MC, Hawke TJ. Inhibition of plasminogen activator inhibitor-1 restores skeletal muscle regeneration in untreated type 1 diabetic mice. Diabetes. 2011;60(7):1964–1972.
  • Paepegaey A-C, Genser L, Bouillot J-L, Oppert J-M, Cl¨¦ment K, Poitou C. High levels of CRP in morbid obesity: the central role of adipose tissue and lessons for clinical practice before and after bariatric surgery. Surgery for Obesity and Related Diseases. 2015;11(1):148–154.
  • Li Z, Wang Y, Tian X, et al. Characterization of the visfatin gene and its expression pattern and effect on 3T3-L1 adipocyte differentiation in chickens. Gene. 2017;632:16–24.
  • Ferland-McCollough D, Maselli D, Spinetti G, et al. MCP-1 feedback loop between adipocytes and mesenchymal stromal cells causes fat accumulation and contributes to hematopoietic stem cell rarefaction in the bone marrow of patients with diabetes. Diabetes. 2018;67(7):1380–1394.
  • Evers-van Gogh IJA, Oteng A-B, Alex S, et al. Muscle-specific inflammation induced by MCP-1 overexpression does not affect whole-body insulin sensitivity in mice. Diabetologia. 2016;59(3):624–633.
  • Kong X, Yao T, Zhou P, et al. Brown adipose tissue controls skeletal muscle function via the secretion of Myostatin. Cell Metab. 2018;28(4):631–643.e3. +;
  • Zhu J, Li Y, Shen W, et al. Relationships between transforming growth factor-bata1, Myostatin, and Decorin. J Biol Chem. 2007;282(35):25852–25863.
  • Ignotz RA, Massague J. Type β transforming growth factor controls the adipogenic differentiation of 3T3 fibroblasts. Proc Natl Acad Sci U S A. 1985;82(24):8530–8534.
  • Murray I, Sniderman AD, Havel PJ, Cianflone K. Acylation Stimulating Protein (ASP) deficiency alters postprandial and adipose tissue metabolism in male mice. The Journal of Biological Chemistry. 1999;274(51):36219–36225.
  • Faraj M, Cianflone K. Differential regulation of fatty acid trapping in mouse adipose tissue and muscle by ASP. American Journal of Physiology-Endocrinology and Metabolism. 2004;287(1):E150–E159.
  • Li Y-P, Lecker SH, Chen Y, Waddell ID, Goldberg AL, Reid MB. TNF-α increases ubiquitin-conjugating activity in skeletal muscle by up-regulating UbcH2/E220k. Faseb J. 2003;17(9):1048–1057.
  • Pelosi L, Giacinti C, Nardis C, et al. Local expression of IGF-1 accelerates muscle regeneration by rapidly modulating inflammatory cytokines and chemokines. Faseb J. 2007;21(7):1393–1402.
  • Milewska M, Domoradzki T, Majewska A, et al. Interleukin-8 enhances myocilin expression, Akt-FoxO3 signaling and myogenic differentiation in rat skeletal muscle cells. J Cell Physiol. 2019;234(11):19675–19690.
  • Kang X, Yang M-y, Shi Y-x, et al. Interleukin-15 facilitates muscle regeneration through modulation of fibro/adipogenic progenitors. Cell Commun Signal. 2018;16(1):42.
  • Huh JY, Dincer F, Mesfum E, Mantzoros CS. Irisin stimulates muscle growth-related genes and regulates adipocyte differentiation and metabolism in humans. Int J Obes. 2014;38(12):1538–1544.
  • Oost LJ, Kustermann M, Armani A, Blaauw B, Romanello V. Fibroblast growth factor 21 controls mitophagy and muscle mass. Journal of Cachexia, Sarcopenia and Muscle. 2019;10(3):630–642.
  • Yasui A, Nishizawa H, Okuno Y, et al. Foxo1 represses expression of musclin, a skeletal muscle-derived secretory factor. Biochem Biophys Res Commun. 2007;364(2):358–365.
  • Seldin MM, Peterson JM, Byerly MS, Wei Z, Wong GW. Myonectin (CTRP15), a Novel Myokine that links skeletal muscle to systemic lipid homeostasis. J Biol Chem. 2012;287(15):11968–11980.
  • Ozaki K, Sano T, Tsuji N, Matsuura T, Narama I. Carnitine is necessary to maintain the phenotype and function of brown adipose tissue. Lab Invest. 2011;91(5):704–710.
  • Murphy RA, Moore SC, Playdon M, et al. Metabolites associated with lean mass and adiposity in older Black Men. J Gerontol A Biol Sci Med Sci. 2017;72(10):1352–1359.
  • Roe CR, Roe DS, Wallace M, Garritson B. Choice of oils for essential fat supplements can enhance production of abnormal metabolites in fat oxidation disorders. Mol Genet Metab. 2007;92(4):346–350.
  • Whytock KL, Parry SA, Turner MC, et al. A high‐fat high‐calorie diet induces fibre‐specific increases in intramuscular triglyceride and perilipin protein expression in human skeletal muscle. J Physiol. 2020;598(6):1151–1167.
  • Lee JS, Pinnamaneni SK, Eo SJ, et al. Saturated, but not n-6 polyunsaturated, fatty acids induce insulin resistance: role of intramuscular accumulation of lipid metabolites. Journal of Applied Physiology. 2006;100(5):1467–1474.
  • Dube JJ, Bhatt BA, Dedousis N, Bonen A, O’Doherty RM. Leptin, skeletal muscle lipids, and lipid-induced insulin resistance. Am J Physiol Regul Integr Comp Physiol. 2007;293(2):R642–50.
  • Stöckli J, Fisher-Wellman KH, Chaudhuri R, et al. Metabolomic analysis of insulin resistance across different mouse strains and diets. J Biol Chem. 2017;292(47):19135–19145.
  • Lievens E, Van Vossel K, Van de Casteele F, Baguet A, Derave W. Sex-specific maturation of muscle metabolites carnosine, creatine, and carnitine over puberty: a longitudinal follow-up study. Journal of Applied Physiology. 2021;131(4):1241–1250.
  • Kazak L, Chouchani ET, Lu GZ, et al. Genetic depletion of adipocyte creatine metabolism inhibits diet-induced thermogenesis and drives obesity. Cell Metab. 2017;26(4):660–671.e3. +;
  • Chee C, Shannon CE, Burns A, et al. Increasing skeletal muscle carnitine content in older individuals increases whole-body fat oxidation during moderate-intensity exercise. Aging Cell. 2021;20(2):e13303.
  • Schaalan MF, Ramadan BK, Abd Elwahab AH. Synergistic effect of carnosine on browning of adipose tissue in exercised obese rats; a focus on circulating irisin levels. J Cell Physiol. 2018;233(6):5044–5057.
  • Gu W, Wang Y, Zeng L, et al. Polysaccharides from Polygonatum kingianum improve glucose and lipid metabolism in rats fed a high fat diet. Biomed Pharmacother. 2020;125:109910.
  • Radhakutty A, Mangelsdorf BL, Drake SM, et al. Effects of prednisolone on energy and fat metabolism in patients with rheumatoid arthritis: tissue-specific insulin resistance with commonly used prednisolone doses. Clin Endocrinol. 2016;85(5):741–747.
  • Chicco AJ, Le CH, Gnaiger E, et al. Adaptive remodeling of skeletal muscle energy metabolism in high-altitude hypoxia: Lessons from AltitudeOmics. J Biol Chem. 2018;293(18):6659–6671.
  • Renaville B, Bacciu N, Lanzoni M, Mossa F, Piasentier E. Association of single nucleotide polymorphisms in fat metabolism candidate genes with fatty acid profiles of muscle and subcutaneous fat in heavy pigs. Meat Sci. 2018;139:220–227.
  • Sjögren K, Leung K-C, Kaplan W, Gardiner-Garden M, Gibney J, Ho KKY. Growth hormone regulation of metabolic gene expression in muscle: a microarray study in hypopituitary men. Am J Physiol Endocrinol Metab. 2007;293(1):E364–71E371.
  • Shahin Shamsabadi A, Selvaganapathy PR. A 3D self-assembled in vitro model to simulate direct and indirect interactions between adipocytes and skeletal muscle cells. Adv Biosys. 2020;4(6):2000034.
  • Cui HX, Guo LP, Zhao GP, et al. Method using a co-culture system with high-purity intramuscular preadipocytes and satellite cells from chicken pectoralis major muscle. Poultr Sci. 2018;97(10):3691–3697.
  • Choi SH, Chung KY, Johnson BJ, et al. Co-culture of bovine muscle satellite cells with preadipocytes increases PPARγ and C/EBPβ gene expression in differentiated myoblasts and increases GPR43 gene expression in adipocytes. J Nutr Biochem. 2013;24(3):539–543.
  • Dietze D, Koenen M, Rohrig K, Horikoshi H, Hauner H, Eckel J. Impairment of insulin signaling in human skeletal muscle cells by co-culture with human adipocytes. Diabetes. 2002;51(8):2369–2376.
  • Gong L, Jin H, Li Y, et al. Rosiglitazone ameliorates skeletal muscle insulin resistance by decreasing free fatty acids release from adipocytes. Biochem Biophys Res Commun. 2020;533(4):1122–1128.
  • Kudoh A, Satoh H, Hirai H, Watanabe T, Shimabukuro M. Preliminary evidence for adipocytokine signals in skeletal muscle glucose uptake. Front Endocrinol. 2018;9:295.
  • Dietze-Schroeder D, Sell H, Uhlig M, Koenen M, Eckel J. Autocrine action of adiponectin on human fat cells prevents the release of insulin resistance-inducing factors. Diabetes. 2005;54(7):2003–2011.
  • El-Habta R, Kingham PJ, Backman LJ. Adipose stem cells enhance myoblast proliferation via acetylcholine and extracellular signal-regulated kinase 1/2 signaling. Muscle Nerve. 2018;57(2):305–311.
  • Vu V, Kim W, Fang X, Liu Y-T, Xu A, Sweeney G. Coculture with primary visceral rat adipocytes from control but not streptozotocin-induced diabetic animals increases glucose uptake in rat skeletal muscle cells: Role of adiponectin. Endocrinology. 2007;148(9):4411–4419.
  • Hausman GJ, Poulos SP. A method to establish co-cultures of myotubes and preadipocytes from collagenase digested neonatal pig semitendinosus muscles1. J Animal Sci. 2005;83(5):1010–1016.
  • Sasao N, Hirayama E, Kim J. Formation and characterization of spontaneously formed heterokaryons between quail myoblasts and 3T3-L1 preadipocytes: correlation between differential plasticity and degree of differentiation. Eur J Cell Biol. 2004;83(1):35–45.
  • Mathes S, Fahrner A, Ghoshdastider U, et al. FGF-2-Cdependent signaling activated in aged human skeletal muscle promotes intramuscular adipogenesis. Proc Natl Acad Sci USA. 2021;118(37):e2021013118.
  • Xu X, Zhao R, Ma W, Zhao Q, Zhang G. Comparison of lipid deposition of intramuscular preadipocytes in Tan sheep co-cultured with satellite cells or alone. Animal Physiology Nutrition. 2022;106(4):733–741.
  • Yan J, Gan L, Yang H, Sun C. The proliferation and differentiation characteristics of co-cultured porcine preadipocytes and muscle satellite cells in vitro. Mol Biol Rep. 2013;40(4):3197–3202.
  • Strieder-Barboza C, Thompson E, Thelen K, Contreras GA. Technical note: bovine adipocyte and preadipocyte co-culture as an efficient adipogenic model. J Dairy Sci. 2019;102(4):3622–3629.
  • Gao X, Li K, Hui X, et al. Carnitine palmitoyltransferase 1A prevents fatty acid-induced adipocyte dysfunction through suppression of c-Jun N-terminal kinase. Biochem J. 2011;435(3):723–732.
  • Yu J, Shi L, Wang H, et al. Conditioned medium from hypoxia-treated adipocytes renders muscle cells insulin resistant. Eur J Cell Biol. 2011;90(12):1000–1015.
  • Chu W, Wei W, Yu S, et al. C2C12 myotubes inhibit the proliferation and differentiation of 3T3-L1 preadipocytes by reducing the expression of glucocorticoid receptor gene. Biochem Biophys Res Commun. 2016;472(1):68–74.
  • Hossner KL, Yemm R, Vierck J, Dodson MV. Insulin-like growth factor (IGF)-I and -II and IGFBP secretion by ovine satellite cell strains grown alone or in coculture with 3T3-L1 preadipocytes. In Vitro CellDevBiol-Animal. 1997;33(10):791–795.
  • Su X, Wang Y, Li A, Zan L, Wang H. Neudesin neurotrophic factor promotes bovine preadipocyte differentiation and inhibits myoblast Myogenesis. Animals. 2019;9(12):1109.
  • Li A, Su X, Wang Y, Cheng G, Zan L, Wang H. Effect of neudesin neurotrophic factor on differentiation of bovine preadipocytes and myoblasts in a co-culture system. Animals. 2020;11(1):34.
  • Li A, Su X, Tian Y, Song G, Zan L, Wang H. Effect of actin Alpha Cardiac Muscle 1 on the proliferation and differentiation of bovine myoblasts and preadipocytes. Animals. 2021;11(12):3468.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.