247
Views
1
CrossRef citations to date
0
Altmetric
Articles

MYH1F promotes the proliferation and differentiation of chicken skeletal muscle satellite cells into myotubes

, , , , ORCID Icon, , & show all

References

  • Han S, Cui C, Wang Y, et al. Knockdown of CSRP3 inhibits differentiation of chicken satellite cells by promoting TGF-β/Smad3 signaling. Gene. 2019;707:36–43.
  • Bassel-Duby R, Olson EN. Signaling pathways in skeletal muscle remodeling. Annu Rev Biochem. 2006;75:19–37.
  • Giordani L, Parisi A, Le Grand F. Satellite cell self-renewal. Curr Top Dev Biol. 2018;126:177–203.
  • Abou-Khalil R, Brack AS. Muscle stem cells and reversible quiescence: the role of sprouty. Cell Cycle. 2010;9(13):2575–2580.
  • Yin H, Price F, Rudnicki MA. Satellite cells and the muscle stem cell niche. Physiol Rev. 2013;93(1):23–67.
  • Bober E, Franz T, Arnold HH, Gruss P, Tremblay P. Pax-3 is required for the development of limb muscles: a possible role for the migration of dermomyotomal muscle progenitor cells. Development. 1994;120(3):603–612.
  • Yafe A, Shklover J, Weisman-Shomer P, Bengal E, Fry M. Differential binding of quadruplex structures of muscle-specific genes regulatory sequences by MyoD, MRF4 and myogenin. Nucleic Acids Res. 2008;36(12):3916–3925.
  • Yoshida T, Delafontaine P. Mechanisms of IGF-1-mediated regulation of skeletal muscle hypertrophy and atrophy. Cells. 2020;9(9):1970.
  • Schiaffino S, Reggiani C. Myosin isoforms in mammalian skeletal muscle. J Appl Physiol (1985). 1994;77(2):493–501.
  • Tidyman WE, Moore LA, Bandman E. Expression of fast myosin heavy chain transcripts in developing and dystrophic chicken skeletal muscle. Dev Dyn. 1997;208(4):491–504.
  • Schiaffino S, Reggiani C. Fiber types in mammalian skeletal muscles. Physiol Rev. 2011;91(4):1447–1531.
  • Parker-Thornburg J, Bauer B, Palermo J, Robbins J. Structural and developmental analysis of two linked myosin heavy chain genes. Dev Biol. 1992;150(1):99–107.
  • Lyons GE, Ontell M, Cox R, Sassoon D, Buckingham M. The expression of myosin genes in developing skeletal muscle in the mouse embryo. J Cell Biol. 1990;111(4):1465–1476.
  • Weydert A, Daubas P, Caravatti M, et al. Sequential accumulation of mRNAs encoding different myosin heavy chain isoforms during skeletal muscle development in vivo detected with a recombinant plasmid identified as coding for an adult fast myosin heavy chain from mouse skeletal muscle. J Biol Chem. 1983;258(22):13867–13874.
  • Cho IC, Park HB, Ahn JS, et al. A functional regulatory variant of MYH3 influences muscle fiber-type composition and intramuscular fat content in pigs. PLoS Genet. 2019;15(10):e1008279.
  • Yue P, Xia S, Wu G, et al. Attenuation of cardiomyocyte hypertrophy via depletion Myh7 using CASAAV. Cardiovasc Toxicol. 2021;21(3):255–264.
  • Briggs MM, Schachat F. The superfast extraocular myosin (MYH13) is localized to the innervation zone in both the global and orbital layers of rabbit extraocular muscle. J Exp Biol. 2002;205(Pt 20):3133–3142.
  • Jacobs-El J, Ashley W, Russell B. IIx and slow myosin expression follow mitochondrial increases in transforming muscle fibers. Am J Physiol. 1993;265(1 Pt 1):C79–84.
  • Larsson L, Edström L, Lindegren B, Gorza L, Schiaffino S. MHC composition and enzyme-histochemical and physiological properties of a novel fast-twitch motor unit type. Am J Physiol. 1991;261(1 Pt 1):C93–101.
  • Listrat A, Lebret B, Louveau I, et al. How muscle structure and composition influence meat and flesh quality. ScientificWorldJournal. 2016;2016:3182746.
  • Xiong X, Liu X, Zhou L, et al. Genome-wide association analysis reveals genetic loci and candidate genes for meat quality traits in Chinese Laiwu pigs. Mamm Genome. 2015;26(3–4):181–190.
  • Yin X, Wu Y, Zhang S, Zhang T, Zhang G, Wang J. Transcriptomic profile of leg muscle during early growth and development in Haiyang yellow chicken. Arch Anim Breed. 2021;64(2):405–416.
  • Ren P, Deng F, Wang Y, et al. Genome-wide analysis of spatiotemporal allele-specific expression in F1 hybrids of meat- and egg-type chickens. Gene. 2020;747:144671.
  • Ren P, Deng F, Chen S, et al. Whole-genome resequencing reveals loci with allelic transmission ratio distortion in F1 chicken population. Mol Genet Genomics. 2021;296(2):331–339.
  • Pampouille E, Berri C, Boitard S, et al. Mapping QTL for white striping in relation to breast muscle yield and meat quality traits in broiler chickens. BMC Genomics. 2018;19(1):202.
  • Cui Z, Liu L, Kwame Amevor F, et al. High expression of miR-204 in chicken atrophic ovaries promotes granulosa cell apoptosis and inhibits autophagy. Front Cell Dev Biol. 2020;8:580072.
  • Xu H, Xu G, Wang D, Ma J, Wan L. Molecular cloning, sequence identification and expression analysis of novel caprine MYLPF gene. Mol Biol Rep. 2013;40(3):2565–2572.
  • Schiaffino S, Rossi AC, Smerdu V, Leinwand LA, Reggiani C. Developmental myosins: expression patterns and functional significance. Skelet Muscle. 2015;5:22.
  • Lundgreen K, Lian OB, Engebretsen L, Scott A. Lower muscle regenerative potential in full-thickness supraspinatus tears compared to partial-thickness tears. Acta Orthop. 2013;84(6):565–570.
  • Ahn JS, Kim DH, Park HB, et al. Ectopic overexpression of porcine Myh1 increased in slow muscle fibers and enhanced endurance exercise in transgenic mice. IJMS. 2018;19(10):2959 (Published 2018 Sep 28).
  • Ye M, Ye F, He L, et al. Transcriptomic analysis of chicken Myozenin 3 regulation reveals its potential role in cell proliferation. PLoS One. 2017;12(12):e0189476 (Published 2017 Dec 13).
  • Machida S, Matsuoka R, Noda S, et al. Evidence for the expression of neonatal skeletal myosin heavy chain in primary myocardium and cardiac conduction tissue in the developing chick heart. Dev Dyn. 2000;217(1):37–49.
  • Xue Q, Zhang G, Li T, Ling J, Zhang X, Wang J. Transcriptomic profile of leg muscle during early growth in chicken. PLoS One. 2017;12(3):e0173824.
  • Rutland CS, Polo-Parada L, Ehler E, et al. Knockdown of embryonic myosin heavy chain reveals an essential role in the morphology and function of the developing heart. Development. 2011;138(18):3955–3966.
  • Luo W, Lin Z, Chen J, et al. TMEM182 interacts with integrin beta 1 and regulates myoblast differentiation and muscle regeneration. J Cachexia Sarcopenia Muscle. 2021;12(6):1704–1723.
  • Kablar B, Krastel K, Tajbakhsh S, Rudnicki MA. Myf5 and MyoD activation define independent myogenic compartments during embryonic development. Dev Biol. 2003;258(2):307–318.
  • Kassar-Duchossoy L, Gayraud-Morel B, Gomès D, et al. Mrf4 determines skeletal muscle identity in Myf5:Myod double-mutant mice. Nature. 2004;431(7007):466–471.
  • Ge X, Zhang Y, Park S, Cong X, Gerrard DE, Jiang H. Stac3 inhibits myoblast differentiation into myotubes. PLoS One. 2014;9(4):e95926.
  • Luo W, Li E, Nie Q, Zhang X. Myomaker, regulated by MYOD, MYOG and miR-140-3p, promotes chicken myoblast fusion. Int J Mol Sci. 2015;16(11):26186–26201 (Published 2015 Nov 2).
  • Lv W, Jin J, Xu Z, et al. lncMGPF is a novel positive regulator of muscle growth and regeneration. J Cachexia Sarcopenia Muscle. 2020;11(6):1723–1746.
  • Lacham-Kaplan O, Camera DM, Hawley JA. Divergent regulation of myotube formation and gene expression by E2 and EPA during in-vitro differentiation of C2C12 myoblasts. IJMS. 2020;21(3):745 (Published 2020 Jan 23).
  • Atreya KB, Fernandes JJ. Founder cells regulate fiber number but not fiber formation during adult myogenesis in Drosophila. Dev Biol. 2008;321(1):123–140.
  • Acakpo-Satchivi LJ, Edelmann W, Sartorius C, et al. Growth and muscle defects in mice lacking adult myosin heavy chain genes. J Cell Biol. 1997;139(5):1219–1229.
  • Allen DL, Leinwand LA. Postnatal myosin heavy chain isoform expression in normal mice and mice null for IIb or IId myosin heavy chains. Dev Biol. 2001;229(2):383–395.
  • He H, Liu XL, Zhang HL, et al. SNV and haplotype analysis reveals new CSRP1 variants associated with growth and carcass traits. Gene. 2013;522(2):206–213.
  • Fan H, Cinar MU, Phatsara C, et al. Molecular mechanism underlying the differential MYF6 expression in postnatal skeletal muscle of Duroc and Pietrain breeds. Gene. 2011;486(1–2):8–14.
  • Weiskirchen R, Pino JD, Macalma T, Bister K, Beckerle MC. The cysteine-rich protein family of highly related LIM domain proteins. J Biol Chem. 1995;270(48):28946–28954.
  • Kollias HD, McDermott JC. Transforming growth factor-beta and myostatin signaling in skeletal muscle. J Appl Physiol. 2008;104(3):579–587.
  • Li X, McFarland DC, Velleman SG. Effect of Smad3-mediated transforming growth factor-beta1 signaling on satellite cell proliferation and differentiation in chickens. Poult Sci. 2008;87(9):1823–1833.
  • Martin JF, Li L, Olson EN. Repression of myogenin function by TGF-beta 1 is targeted at the basic helix-loop-helix motif and is independent of E2A products. J Biol Chem. 1992;267(16):10956–10960.
  • Kelc R, Trapecar M, Gradisnik L, Rupnik MS, Vogrin M. Platelet-rich plasma, especially when combined with a TGF-β inhibitor promotes proliferation, viability and myogenic differentiation of myoblasts in vitro. PLoS One. 2015;10(2):e0117302.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.