198
Views
0
CrossRef citations to date
0
Altmetric
Articles

Mitogenome-wide association study on body measurement traits of Wenshang Barred chickens

, , , , , & show all

References

  • O’Rourke B. Metabolism: beyond the power of mitochondria. Nat Rev Cardiol. 2016;13(7):386–388.
  • Anderson S, Bankier AT, Barrell BG, et al. Sequence and organization of the human mitochondrial genome. Nature. 1981;290(5806):457–465.
  • Jacobs HT, Turnbull DM. Nuclear genes and mitochondrial translation: a new class of genetic disease. Trends Genet. 2005;21(6):312–314.
  • Suzuki T, Nagao A, Suzuki T. Human mitochondrial tRNAs: biogenesis, function, structural aspects, and diseases. Annu Rev Genet. 2011;45:299–329.
  • Lu WW, Hou LL, Zhang WW, et al. Study on heteroplasmic variation and the effect of chicken mitochondrial ND2. Mitochondrial DNA A DNA Mapp Seq Anal. 2016;27(4):2303–2309.
  • Wang XY, He Y, Li JY, Bao HG, Wu C. Association of a missense nucleotide polymorphism in the MT-ND2 gene with mitochondrial reactive oxygen species production in the Tibet chicken embryo incubated in normoxia or simulated hypoxia. Anim Genet. 2013;44(4):472–475.
  • Sun J, Zhong H, Chen SY, Yao YG, Liu YP. Association between MT-CO3 haplotypes and high-altitude adaptation in Tibetan chicken. Gene. 2013;529(1):131–137.
  • Kong M, Xiang H, Wang J, Liu J, Zhang X, Zhao X. Mitochondrial DNA haplotypes influence energy metabolism across chicken transmitochondrial cybrids. Genes. 2020;11(1):100.
  • Bao HG, Zhao CJ, Li JY, Wu C. Association of MT-ND5 gene variation with mitochondrial respiratory control ratio and NADH dehydrogenase activity in Tibet chicken embryos. Anim Genet. 2007;38(5):514–516.
  • Evaris EF, Sarmiento-Franco L, Sandoval-Castro CA. Meat and bone quality of slow-growing male chickens raised with outdoor access in tropical climate. J Food Compos Anal. 2021;98(2021):103802.
  • Gonzalez-Ceron F, Rekaya R, Aggrey SE. Genetic analysis of bone quality traits and growth in a random mating broiler population. Poult Sci. 2015;94(5):883–889.
  • Mahammi FZ, Gaouar SBS, Tabet-Aoul N, Tixier-Boichard M, Saidi-Mehtar N. Morpho-biometric characteristics and breeding systems of local chickens in the Oranie region (West Algeria). Cah Agric. 2014;23(6):382–392.
  • Rania BL, Ibtissam B, Cherifa HNEH, Rafaa M, Gaouar SBS. Morpho-metric and zootechnical study of chicken BRAHMA in the wilaya of TLEMCEN, Northwestern of Algeria. 2019;3(2):70–79
  • Mahammi FZ, Gaouar SBS, Bouri SM, Aidouni H, Tabet-Aoul N. Study of zootechnical performances of 4 genotypes of local Algerian chickens in experimental station. Livest Res Rural Dev. 2021;33(2):29.
  • Lund T, Miglior F, Dekkers JCM, Burnside EB. Genetic relationships between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest Prod Sci. 1994;39(3):243–251.
  • Pryce JE, Hayes B, Bolormaa S, Goddard ME. Polymorphic regions affecting human height also control stature in cattle. Genetics. 2011;187(3):981–984.
  • Wu X, Fang M, Liu L, et al. Genome wide association studies for body conformation traits in the Chinese Holstein cattle population. BMC Genomics. 2013;14:897.
  • Galton F. Regression towards mediocrity in hereditary stature. J Anthropol Inst G B Irel. 1886;15:246–263.
  • Kadraoui S, Mennani A, Gaouar SBS. Phenotypic and morphometric characterization of the various strains of quail raised in Algeria.Gen. Biodiv. J. 2020;4(1):81–92.
  • Zhou L, Zhao W, Fu Y, Fang X, Ren S, Ren J. Genome-wide detection of genetic loci and candidate genes for teat number and body conformation traits at birth in Chinese Sushan pigs. Anim Genet. 2019;50(6):753–756.
  • Song HL, Zhang JX, Zhang Q, Ding XD. Using different single-step strategies to improve the efficiency of genomic prediction on body measurement traits in pig. Front Genet. 2018;9:730.
  • Jin YY, Yang Q, Gao JY, et al. Detection of insertions/deletions within SIRT1, SIRT2 and SIRT3 genes and their associations with body measurement traits in cattle. Biochem Genet. 2018;56(6):663–676.
  • Benyarou M, Amine BME, Abdelkader AA, Bouhandasse A, Gaouar SBS. Contribution to the study of the physicochemical characteristics of bovine milk in the Tlemcen region. Gen. Biodiv. J. 2017;1(2):42–47.
  • Baya M, Benyarou M, Abdelkader AA, Gaouar SBS. Contribution to the study of two local bovine breeds in wilaya of Tlemcen: morphometric characterization and DNA biobank. Gen. Biodv. J. 2018;2(1):48–59.
  • Shishay G, Liu G, Jiang X, et al. Variation in the promoter region of the MC4R gene elucidates the association of body measurement traits in Hu sheep. Int J Mol Sci. 2019;20(2):240.
  • Belharfi FZ, Amal D, Abdelkader AA, Gaouar SBS. Barymetric characterization of Algerian sheep breeds in Western Algeria. Gen. Biodv.J. 2017;1(2): 31–11.
  • Khaled F, Tolone M, Amato B, Houssem S, Vitale M. Characterization of morphological traits in Algerian indigenous goats by multivariate analysis. Gen. Biodiv. J. 2017;1(2):20–30.
  • Belantar I, Tefiel H, Gaouar SBS. Phenotypic characterization of local goat population in western Algeria (Wilaya of Relizane) with morphometric measurements and milk analysis. Gen. Biodiv. J. 2018;2(1):73–80.
  • Sarra B, Hakim T, Belantar I, Mohamed C, Gaouar SBS. Discriminant analysis on the morphometry of local goats breed in the western of Algeria. Gen. Biodiv. J.2019;3(2):49–56.
  • Meghelli I, Kaouadji Z, Yilmaz O, Cemal  , Gaouar SBS. Morphometric characterization and estimating body weight of two Algerian camel breeds using morphometric measurements. Trop Anim Health Pro. 2020;52(5):2505–2512.
  • Benhamadi M, Mezouar K, Mohamed B, Bouhandasse A, Gaouar SBS. Morphometric characterization of the equine barbe breed in Northwest of Algeria. ASJP. 2017;1(2):48–65.
  • Amine BME, Mezouar K, Gaouar SBS. Caractérisation de la race équine Barbe en Algérie: Caractérisation de la race équine Barbe en Algérie. Chisinau, Republic of Moldova:OmniScriptum; 2019.
  • Li H, Deeb N, Zhou H, Mitchell AD, Ashwell CM, Lamont SJ. Chicken quantitative trait loci for growth and body composition associated with transforming growth factor-beta genes. Poult Sci. 2003;82(3):347–356.
  • Zhou H, Deeb N, Evock-Clover CM, Mitchell AD, Ashwell CM, Lamont SJ. Genome-wide linkage analysis to identify chromosomal regions affecting phenotypic traits in the chicken. III. Skeletal integrity. Poult Sci. 2007;86(2):255–266.
  • FAO. The State of the World’s Biodiversity for Food and Agriculture. Rome, Italy: FAO; 2019.
  • Lv C, Niu S, Yan S, et al. Low-density lipoprotein receptor-related protein 1 regulates muscle fiber development in cooperation with related genes to affect meat quality. Poult Sci. 2019;98(9):3418–3425.
  • Li F, Han H, Lei Q, et al. Genome-wide association study of body weight in Wenshang Barred chicken based on the SLAF-seq technology. J Appl Genet. 2018;59(3):305–312.
  • Yuan Z, Chen Y, Chen Q, et al. Characterization of chicken mmp13 expression and genetic effect on egg production traits of its promoter polymorphisms. G3. 2016;6(5):1305–1312.
  • Mishra SK, Chen B, Zhu Q, et al. Transcriptome analysis reveals differentially expressed genes associated with high rates of egg production in chicken hypothalamic-pituitary-ovarian axis. Sci Rep. 2020;10(1):5976.
  • Guo X, Wang Y, Chen Q, et al. The role of PTHLH in ovarian follicle selection, its transcriptional regulation and genetic effects on egg laying traits in hens. Front Genet. 2019;10:430.
  • Sheng Q, Cao DG, Zhou Y, et al. Detection of SNPs in the cathepsin D gene and their association with yolk traits in chickens. PLoS One. 2013;8(2):e56656.
  • Wu CX. Theory and technology of conservation of livestock and poultry genetic resource. Ecol Domest Anim. 2001;22(1):1–4.
  • Katoh K, Standley DM. MAFFT multiple sequence alignment sofware version 7: improvements in performance and usability. Mol Biol Evol. 2013;30(4):772–780.
  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol. 2013;30(12):2725–2729.
  • Villesen P. FaBox: an online toolbox for fasta sequences. Mol Ecol Notes. 2007;7(6):965–968.
  • Bandelt HJ, Forster P, Rohl A. Median-joining networks for inferring intraspecific phylogenies. Mol Biol Evol. 1999;16(1):37–48.
  • Gilmour AR, Gogel BJ, Cullis BR, Thompson R. ASReml User Guide Release 3.0. Hemel Hempstead, UK: VSN International Ltd; 2009.
  • Miller B, Torres M, Jiang X, et al. A mitochondrial genome-wide association study of cataract in a Latino population. Transl Vis Sci Technol. 2020;9(6):25.
  • Berg SVD, Vandenplas J, Eeuwijk FAV, Lopes MS, Veerkamp RF. Significance testing and genomic inflation factor using high-density genotypes or whole genome sequence data. J Anim Breed Genet. 2019;136(6):418–429.
  • Giorgi EE, Li YQ, Caberto CP, et al. No association between the mitochondrial genome and prostate cancer risk: the multiethnic cohort. Cancer Epidemiol Biomarkers Prev. 2016;25(6):1001–1003.
  • Wang L, Chen ZJ, Zhang YK, Le HB. The role of mitochondrial tRNA mutations in lung cancer. Int J Clin Exp Med. 2015;8(8):13341–13346.
  • Maiwashe AN, Bradfield MJ, Theron HE, Wyk J. Genetic parameter estimates for body measurements and growth traits in South African Bonsmara cattle. Livest Prod Sci. 2002;75(3):293–300.
  • Kahi AK, Hirooka H. Genetic and economic evaluation of Japanese Black (Wagyu) cattle breeding schemes. J Anim Sci. 2005;83(9):2021–2032.
  • Ladoukakis ED, Zouros E. Evolution and inheritance of animal mitochondrial DNA: rules and exceptions. J Biol Res. 2017;24:2.
  • Taylor RW, Turnbull DM. Mitochondrial DNA mutations in human disease. Nat Rev Genet. 2005;6(5):389–402.
  • Flierl A, Reichmann H, Seibel P. Pathophysiology of the MELAS 3243 transition mutation. J Biol Chem. 1997;272(43):27189–27196.
  • Holt IJ, Harding AE, Morgan-Hughes JA. Deletions of muscle mitochondrial DNA in patients with mitochondrial myopathies. Nature. 1988;331(6158):717–719.
  • Lott MT, Leipzig JN, Derbeneva O, et al. mtDNA variation and analysis using Mitomap and Mitomaster. Curr Protoc Bioinform. 2013;44(123):1.23.1-26.
  • Wallace DC, Singh G, Lott MT, et al. Mitochondrial DNA mutation associated with Leber’s hereditary optic neuropathy. Science. 1988;242(4884):1427–1430.
  • Craven L, Alston CL, Taylor RW, Turnbull DM. Recent advances in mitochondrial disease. Annu Rev Genom Hum Genet. 2017;18(1):257–275.
  • McFadden CS, Tullis ID, Hutchinson MB, Winner K, Sohm JA. Variation in coding (NADH dehydrogenase subunits 2, 3, and 6) and noncoding intergenic spacer regions of the mitochondrial genome in Octocorallia (Cnidaria: Anthozoa). Mar Biotechnol. 2004;6(6):516–526.
  • Jin EH, Sung JK, Lee SI, Hong JH. Mitochondrial NADH dehydrogenase subunit 3 (MTND3) polymorphisms are associated with gastric cancer susceptibility. Int J Med Sci. 2018;15(12):1329–1333.
  • McFarland R, Kirby DM, Fowler KJ, et al. De novo mutations in the mitochondrial ND3 gene as a cause of infantile mitochondrial encephalopathy and complex I deficiency. Ann Neurol. 2004;55(1):58–64.
  • Galkin A, Meyer B, Wittig I, et al. Identification of the mitochondrial ND3 subunit as a structural component involved in the active/deactive enzyme transition of respiratory complex I. J Biol Chem. 2008;283(30):20907–20913.
  • Levy RJ, Rios PG, Akman HO, Sciacco M, Vivo DC, DiMauro S. Long survival in patients with Leigh syndrome and the m.10191T > C mutation in MT-ND3: a case report and review of the literature. J Child Neurol. 2014;29(10):NP105–NP110.
  • Arnold RS, Fedewa SA, Goodman M, et al. Bone metastasis in prostate cancer: recurring mitochondrial DNA mutation reveals selective pressure exerted by the bone microenvironment. Bone. 2015;78:81–86.
  • Yacoub HA, Fathi MM, Sadek MA. Using cytochrome b gene of mtDNA as a DNA barcoding marker in chicken strains. Mitochondr DNA. 2015;26(2):217–223.
  • Chen X, Wang D, Xiang H, et al. Mitochondrial DNA T7719G in tRNA-Lys gene affects litter size in small-tailed Han sheep. J Anim Sci Biotechnol. 2017;8:31.
  • Wang D, Ning C, Liu JF, Zhao XB. Relationship between mitochondrial DNA haplogroup and litter size in the pig. Reprod Fertil Dev. 2020;32(3):267–273.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.