95
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

Detection of genetic variation in bovine CRY1 gene and its associations with carcass traits

ORCID Icon, ORCID Icon, ORCID Icon, ORCID Icon, , , & ORCID Icon show all

References

  • Zheng X, Zhao X, Zhang Y, et al. RAE1 promotes BMAL1 shuttling and regulates degradation and activity of CLOCK: BMAL1 heterodimer. Cell Death Dis. 2019;10(2):62.
  • Van L, Linda W, Lüscher T, Young F, Martin E. The circadian clock in cardiovascular regulation and disease: lessons from the Nobel Prize in Physiology or Medicine 2017. Eur Heart J. 2018;39(24):2326–2329.
  • Gangitano E, Gnessi L, Lenzi A, Ray D. Chronobiology and metabolism: is ketogenic diet able to influence circadian rhythm? Front Neurosci. 2021;15:756970.
  • Vicent L, MartínezSellés M. Circadian rhythms, cardiac arrhythmias and sudden death. Front Biosci (Landmark Edition). 2021;26:1305–1311.
  • Schroder EA, Ono M, Johnson SR, et al. The role of the cardiomyocyte circadian clocks in ion channel regulation and cardiac electrophysiology. J Physiol. 2022;600(9):2037–2048.
  • Li X, Jiang E, Zhang K, et al. Genetic variations within the bovine CRY2 gene are significantly associated with carcass traits. Animals (Basel). 2022;12(13):1616.
  • Han Q, He X, Di Ran; Chu M. Comparison of expression patterns of six canonical clock genes of follicular phase and luteal phase in small-tailed Han sheep. Arch Anim Breed. 2021;64:457–466.
  • Dyakin VV, Dyakina-Fagnano NV, Mcintire LB, Uversky VN. Fundamental clock of biological aging: convergence of molecular, neurodegenerative, cognitive and psychiatric pathways: non-equilibrium thermodynamics meet psychology. Int J Mol Sci. 2021;23:285.
  • Kayitmazbatir SC, Cotul EK, Growe J, et al. CRY1-CBS Binding Regulates Circadian Clock Function and Metabolism. FEBS J. 2021;288(2):614–639.
  • Cao Q, Zhao X, Bai J, et al. Circadian clock cryptochrome proteins regulate autoimmunity. Proc Natl Acad Sci USA. 2017;114(47):12548–12553.
  • Toledo M, Batista-Gonzalez A, Merheb E, et al. Autophagy regulates the liver clock and glucose metabolism by degrading CRY1. Cell Metab. 2018;28(2):268–281.e4.
  • Zhou J, Tang ZY, Sun XL. RNF38 inhibits osteosarcoma cell proliferation by binding to CRY1. Biochem Cell Biol. 2021;99(5):629–635.
  • Huang Y, Jiang X, Yan Y, Liu G, Liu C. Expression of cell proliferation regulatory factors bricd5, tnfrsf21, cdk1 correlates with expression of clock gene cry1 in testes of Hu rams during puberty. Mol Biol Rep. 2021;48(11):7379–7385.
  • Utrera AR, Van Vleck LD. Heritability estimates for carcass traits of cattle: a review. Genetics and Molecular Research: GMR. 2004;3:380–394.
  • Li H, Wang R, Wang Z, et al. The research progress of genomic selection in livestock. Yi chuan = Hereditas. 2017;39:377–387.
  • Remi LG, Anna W, Rolf BE, Ross DH. Potential of genome editing to improve aquaculture breeding and production. Trends Genet. 2019;35:672–684.
  • Rafter P, Gormley IC, Purfield D, Parnell AC, Naderi S, Berry DP. Genome-wide association analyses of carcass traits using copy number variants and raw intensity values of single nucleotide polymorphisms in cattle. BMC Genomics. 2021;22(1):757.
  • Zhang Z, Yang P, He P, et al. Distribution and association study of PLAG1 gene between copy number variation and Chinese cattle populations. Anim Biotechnol. 2020;33:273–278.
  • Guo X, Pei J, Wu X, et al. Detection of InDel and CNV of SPAG17 gene and their associations with bovine growth traits. Anim Biotechnol. 2020;33:440–447.
  • Mao C, Ju X, Cheng H, et al. Determination of genetic variation within the DYRK2 gene and its associations with milk traits in cattle. Arch Anim Breed. 2020;63(2):315–323.
  • Liu R, Liu X, Bai X, Xiao C, Dong Y. Different expression of lipid metabolism-related genes in Shandong black cattle and Luxi cattle based on transcriptome analysis. Sci Rep. 2020;10(1):21915.
  • Wang Z, Zhang X, Jiang E, et al. InDels within caprine IGF2BP1 intron 2 and the 3'-untranslated regions are associated with goat growth traits. Anim Genet. 2020;51(1):117–121.
  • Chen ZG, Ma ZX, Zuo B, Lei MG, Xiong YZ. Molecular characterization and association with carcass traits of the porcine SLC39A7 gene. J Anim Breed Genet. 2009;126(4):288–295.
  • Evans P, Avey S, Kong Y, Krauthammer M. Adjusting for background mutation frequency biases improves the identification of cancer driver genes. IEEE Trans Nanobiosci. 2013;12(3):150–157.
  • Markowska M, Majewski PM, Skwarło-Sońta K. Avian biological clock – immune system relationship. Dev Comp Immunol. 2017;66:130–138.
  • Mazzoccoli G, Vinciguerra M, Carbone A, Relogio A. The circadian clock, the immune system, and viral infections: the intricate relationship between biological time and host–virus interaction. Pathogens. 2020;9(2):83.
  • Wang Z, Su G, Dai Z, et al. Circadian clock genes promote glioma progression by affecting tumour immune infiltration and tumour cell proliferation. Cell Prolif. 2021;54(3):e12988.
  • Pan X, Mota S, Zhang B. Circadian clock regulation on lipid metabolism and metabolic diseases. Adv Exp Med Biol. 2020;1276:53–66.
  • Reinke H, Asher G. Circadian clock control of liver metabolic functions. Gastroenterology. 2016;150(3):574–580.
  • Ruan W, Yuan X, Eltzschig HK. Circadian rhythm as a therapeutic target. Nat Rev Drug Discov. 2021;20(4):287–307.
  • Amano T, Tokunaga K, Kakegawa R, et al. Expression analysis of circadian genes in oocytes and preimplantation embryos of cattle and rabbits. Anim Reprod Sci. 2010;121(3–4):225–235.
  • Nebzydoski SJ, Pozzo S, Nemec L, Rankin MK, Gressley TF. The effect of dexamethasone on clock gene mRNA levels in bovine neutrophils and lymphocytes. Vet Immunol Immunopathol. 2010;138(3):183–192.
  • Ikeda H, Yong Q, Kurose T, et al. Clock gene defect disrupts light-dependency of autonomic nerve activity. Biochem Biophys Res Commun. 2007;364(3):457–463.
  • Renstrom F, Koivula RW, Varga TV, et al. Season-dependent associations of circadian rhythm-regulating loci (CRY1, CRY2 and MTNR1B) and glucose homeostasis: the GLACIER Study. Diabetologia. 2015;58(5):997–1005.
  • Jordan SD, Kriebs A, Vaughan M, et al. CRY1/2 selectively repress PPARdelta and limit exercise capacity. Cell Metab. 2017;26(1):243–255.e6.
  • Engin A. Circadian rhythms in diet-induced obesity. Adv Exp Med Biol. 2017;960:19–52.
  • Li J, Zhu X, Ma L, et al. Detection of a new 20-bp insertion/deletion (InDel) within sheep PRND gene using mathematical expectation (ME) method. Prion. 2017;11(2):143–150.
  • Luo B, Zhou X, Tang Q, et al. Circadian rhythms affect bone reconstruction by regulating bone energy metabolism. J Transl Med. 2021;19(1):410.
  • Jakub Z, Martin R. Fluctuating temperatures extend median lifespan, improve reproduction and reduce growth in turquoise killifish. Exp Gerontol. 2020;140:111073.
  • Leclercq B, Hicks D, Laurent V. Photoperiod integration in C3H rd1 mice. J Pineal Res. 2020;71:e12711.
  • Boden MJ, Varcoe TJ, Kennaway DJ. Circadian regulation of reproduction: from gamete to offspring. Prog Biophys Mol Biol. 2013;113(3):387–397.
  • Leibetseder V, Humpeler S, Svoboda M, et al. Clock genes display rhythmic expression in human hearts. Chronobiol Int. 2009;26(4):621–636.
  • Anonymous. Intron Therapy; New findings from National Institute for Materials Science in the area of intron therapy published. Biotech Business Week. 2010.
  • Itakura E, Odaira K, Yokoyama K, Osuna M, Hara T, Inoue K. Generation of transgenic rats expressing green fluorescent protein in S-100beta-producing pituitary folliculo-stellate cells and brain astrocytes. Endocrinology. 2007;148(4):1518–1523.
  • Xu L, Matsumoto A, Sasaki A, Harada H, Taniguchi A. Identification of a suppressor element in the amelogenin promoter. J Dent Res. 2010;89(3):246–251.
  • Haked HM, Salah S, Agan SY, Meiner V, Harel T. Biallelic deletion in a minimal CAPN15 intron in siblings with a recognizable syndrome of congenital malformations and developmental delay. Clin Genet. 2021;99(4):577–582.
  • El Marabti E, Malek J, Younis I. Minor intron splicing from basic science to disease. Int J Mol Sci. 2021;22:6062.
  • Gamarra D, Aldai N, Arakawa A, de Pancorbo MM, Taniguchi M. Effect of a genetic polymorphism in SREBP1 on fatty acid composition and related gene expression in subcutaneous fat tissue of beef cattle breeds. Anim Sci J Nihon Chikusan Gakkaiho. 2021;92(1):92.
  • Teferedegn EY, Can H, Erkunt AS, Ün C. Low frequency of protective variants at regulatory region of PRNP gene indicating the genetically high risk of BSE in Ethiopian Bos indicus and Bos taurus africanus. Anim Biotechnol. 2022;9:1–6
  • Zihui Z, Bizhi H, Zhenyu L, et al. The Distribution Characteristics of a 19-bp Indel of the PLAG1 Gene in Chinese Cattle. Animals (Basel). 2019;9(12):1082.
  • Bielińska E, Matiakowska K, Haus O. Heterogeneity of human WT1 gene. Postepy Hig Med Dosw (Online). 2017;71(0):595–601.
  • Chaudhary S, Islam Z, Mishra V, Rawat S, Ashraf GM, Kolatkar PR. Sox2: a regulatory factor in tumorigenesis and metastasis. Curr Protein Pept Sci. 2019;20(6):495–504.
  • Yao Y, Chai X, Gong C, Zou L. WT1 inhibits AML cell proliferation in a p53-dependent manner. Cell Cycle. 2021;20(16):1552–1560.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.