175
Views
0
CrossRef citations to date
0
Altmetric
Research Articles

An exploratory data analysis on genetic architecture in Bos taurus through miRNAs within QTLs and their target genes

, , &

References

  • Rosário MFD. Arquitetura genética de características quantitativas associadas ao desempenho e ao rendimento de carcaça na galinha doméstica. Piracicaba: Escola Superior de Agricultura Luiz de Queiroz, Universidade de São Paulo; 2007.
  • Zeng ZB, Kao CH, Basten CJ. Estimating the genetic architecture of quantitative traits. Genet Res. 1999;74(3):279–289.
  • Corva PM, Horvat S, Medrano JF. Genetic modifiers of high growth (hg),a mutation that increases body size in the mouse. Mamm Genome. 2001;12(4):284–290.
  • Mackay TF. The genetic architecture of quantitative traits: lessons from Drosophila. Curr Opin Genet Dev. 2004;14(3):253–257.
  • Roff DA. 2012. Evolutionary Quantitative Genetics. Berlin, Germany: Springer Science & Business Media.
  • Bourdon C, Boussaha M, Bardou P, et al. In silico identification of variations in microRNAs with a potential impact on dairy traits using whole ruminant genome SNP datasets. Sci Rep. 2021;11(1):1–13.
  • Ghoshal A, Shankar R, Bagchi S, et al. MicroRNA target prediction using thermodynamic and sequence curves. BMC Genomics. 2015;16:999.
  • Friedman RC, Farh KKH, Burge CB, Bartel DP. Most mammalian mRNAs are conserved targets of microRNAs. Genome Res. 2009;19(1):92–105.
  • Domingues WB, Silveira TLR, Nunes LS, et al. GH overexpression alters spermatic cells microRNAome profile in transgenic zebrafish. Front Genet. 2021;12:704778.
  • Myles C, Wayne M. Quantitative trait locus (QTL) analysis. Nature Education. 2008;1(1):208.
  • (a) Li B, VanRaden PM, Null DJ, et al. Major quantitative trait loci influencing milk production and conformation traits in Guernsey dairy cattle detected on Bos taurus autosome 19. J Dairy Sci. 2021;104(1):550–560; (b) Anderson L, Georges M. Domestic-animal genomics: deciphering the genetics of complex traits. Nat Rev Genet. 2004;5(3):202–212.
  • Khatkar MS, Thomson PC, Tammen I, Raadsma HW. Quantitative trait loci mapping in dairy cattle: review and meta-analysis. Genet Sel Evol. 2004;36(2):163–190.
  • Peng T, Teotia S, Tang G, Zhao Q. MicroRNAs meet with quantitative trait loci: small powerful players in regulating quantitative yield traits in rice. Wiley Interdiscip Rev RNA. 2019;10(6):e1556.
  • Jiang Q, Zhao H, Li R, et al. In silico genome-wide miRNA-QTL-SNPs analyses identify a functional SNP associated with mastitis in Holsteins. BMC Genet. 2019;20(1):1–10.
  • Fang L, Sørensen P, Sahana G, et al. MicroRNA-guided prioritization of genome-wide association signals reveals the importance of microRNA-target gene networks for complex traits in cattle. Sci Rep. 2018;8(1):1–14.
  • Rousseeuw PJ. Silhouettes: a graphical aid to the interpretation and validation of cluster analysis. J Comput Appl Math. 1987;20:53–65.
  • López GA, Brogaard L, Heegaard MHP, Cirera S, Skovgaard K. AU Content in the MicroRNA Sequence Influences its Stability after Heat Treatment. MIRNA. 2019;8(3):216–222.
  • Vejnar CE, Zdobnov EM. MiRmap: comprehensive prediction of microRNA target repression strength. Nucleic Acids Res. 2012;40(22):11673–11683.
  • Wang X, Maltecca C, Tal-Stein R, Lipkin E, Khatib H. Association of bovine fibroblast growth factor 2 (FGF2) gene with milk fat and productive life: an example of the ability of the candidate pathway strategy to identify quantitative trait genes. J Dairy Sci. 2008;91(6):2475–2480.
  • Dauria BDI. Genomic Confirmatory Factor Analysis on Milk Fatty Acid Profile in Dairy Cattle Reared in Tropical Conditions. Piracicaba, SP: USP Inc.; 2021.
  • Xia J, Qi X, Wu Y, et al. Genome-wide association study identifies loci and candidate genes for meat quality traits in Simmental beef cattle. Mamm Genome. 2016;27(5-6):246–255.
  • Wang Y, Guo W, Tang K, Wang Y, Zan L, Yang W. Bta-miR-34b regulates milk fat biosynthesis by targeting mRNA decapping enzyme 1A (DCP1A) in cultured bovine mammary epithelial cells. J Anim Sci. 2019;97(9):3823–3831.
  • Zhang F, Qu K, Chen N, et al. Genome-wide SNPs and InDels characteristics of three Chinese cattle breeds. Animals. 2019;9(9):596.
  • Orihuela A. Effect of calf stimulus on the milk yield of Zebu-type cattle. Appl Anim Behav Sci. 1990;26(1–2):187–190.
  • Mucignat-Caretta, C. (Ed.). Neurobiology of Chemical Communication. Padova, Italy: University of Padova; 2014.
  • Nannig P, Pulido RG, Ruiz-Albarrán M, et al. Sensory additive alters grazing behavior and increases milk response to concentrate supplementation in dairy cows. Livestock Science. 2018;214:106–111.
  • Cui Y, Sun X, Jin L, et al. MiR-139 suppresses β-casein synthesis and proliferation in bovine mammary epithelial cells by targeting the GHR and IGF1R signaling pathways. BMC Vet Res. 2017;13(1):350.
  • Li Z, Liu H, Jin X, Lo L, Liu J. Expression profiles of microRNAs from lactating and non-lactating bovine mammary glands and identification of miRNA related to lactation. BMC Genomics. 2012;13:731.
  • Guttman M, Amit I, Garber M, et al. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature. 2009;458(7235):223–227.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.