123
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Bioinformatics analysis and the association of polymorphisms within the caprine GDF9 gene promoter with economically useful traits in Damani goats

, , , , , , , & show all

References

  • Porter V, Alderson L, Hall SJ, et al. Mason’s World Encyclopedia of Livestock Breeds and Breeding, 2 Volume Pack. Cabi; 2016.
  • Afzal M, Naqvi A, Wfp KL, et al. Livestock resources of pakistan: Present status and future trends. Quarterly Science Vision 9. 2004.
  • Babar ME, Hussain T. Rearing and Breeding Damani Goats in Pakistan. Sustainable Goat Production in Adverse Environments. Volume II. Cham, Denmark: Springer; 2017. p. 55–64.
  • Drouilhet L, Lecerf F, Bodin L, et al. Fine mapping of the FecL locus influencing prolificacy in Lacaune sheep. Anim Genet. 2009;40(6):804–812.
  • Souza C, MacDougall C, Campbell B, et al. The Booroola (FecB) phenotype is associated with a mutation in the bone morphogenetic receptor type 1 B (BMPR1B) gene. J Endocrinol. 2001;169(2):R1–R6.
  • Hanrahan JP, Gregan SM, Mulsant P, et al. Mutations in the genes for oocyte-derived growth factors GDF9 and BMP15 are associated with both increased ovulation rate and sterility in Cambridge and Belclare sheep (Ovis aries). Biol Reprod. 2004;70(4):900–909.
  • Elvin JA, Clark AT, Wang P, et al. Paracrine actions of growth differentiation factor-9 in the mammalian ovary. Mol Endocrinol. 1999;13(6):1035–1048.
  • McNatty KP, Juengel JL, Reader KL, et al. Bone morphogenetic protein 15 and growth differentiation factor 9 co-operate to regulate granulosa cell function in ruminants. Reproduction. 2005;129(4):481–487.
  • Alves A, Chaves R, Rocha R, et al. Dynamic medium containing growth differentiation factor-9 and FSH maintains survival and promotes in vitro growth of caprine preantral follicles after long-term in vitro culture. Reprod Fertil Dev. 2013;25(6):955–965.
  • Davis G. Major genes affecting ovulation rate in sheep. Genet Sel Evol. 2005;37(Suppl. 1):S11–S23.
  • Ghoreishi H, Fathi-Yosefabad S, Shayegh J, et al. Identification of mutations in BMP15 and GDF9 genes associated with prolificacy of Markhoz goats. Arch Anim Breed. 2019;62(2):565–570.
  • Wang X, Yang Q, Zhang S, et al. Genetic Effects of Single Nucleotide Polymorphisms in the Goat GDF9 Gene on Prolificacy: True or False Positive? Animals. 2019;9(11):886.
  • Dutta R, Das B, Laskar S, et al. Polymorphism, sequencing and phylogenetic characterization of growth differentiation factor 9 (GDF9) gene in Assam Hill goat. Afr J Biotechnol. 2013;12(50):6894–6900.
  • Ahlawat S, Sharma R, Maitra A, et al. Designing, optimization and validation of tetra-primer ARMS PCR protocol for genotyping mutations in caprine Fec genes. Meta Gene. 2014;2:439–449.
  • Sun W, Gao W, Yu J, et al. Polymorphisms of FSH-β and GDF-9 genes and their relationships with prolificacy in Haimen goat and Xuhuai goat. Journal of Yangzhou University, Agricultural and Life Sciences Edition. 2016;37(1):41–46.
  • Meuwissen TH, Hayes BJ, Goddard ME. Prediction of total genetic value using genome-wide dense marker maps. Genetics. 2001;157(4):1819–1829.
  • Schaeffer LR. Strategy for applying genome-wide selection in dairy cattle. J Anim Breed Genet. 2006;123(4):218–223.
  • de Roos AP, Schrooten C, Mullaart E, et al. Breeding value estimation for fat percentage using dense markers on Bos taurus autosome 14. J Dairy Sci. 2007;90(10):4821–4829.
  • Guillaume F, Fritz S, Boichard D, et al. Estimation by simulation of the efficiency of the French marker-assisted selection program in dairy cattle. Genet Sel Evol. 2008;40(1):91–102.
  • Fragomeni BO, Lourenco DAL, Legarra A, et al. Alternative SNP weighting for single-step genomic best linear unbiased predictor evaluation of stature in US Holsteins in the presence of selected sequence variants. J Dairy Sci. 2019;102(11):10012–10019.
  • Akhatayeva Z, Bi Y, He Y, et al. Survey of the relationship between polymorphisms within the BMPR1B gene and sheep reproductive traits. Anim Biotechnol. 2021;12:1–10.
  • Wei D-W, Gui L-S, Raza SHA, et al. NRF1 and ZSCAN10 bind to the promoter region of the SIX1 gene and their effects body measurements in Qinchuan cattle. Sci Rep. 2017;7(1):1–11.
  • Wu S, Wang Y, Ning Y, et al. Genetic Variants in STAT3 Promoter Regions and Their Application in Molecular Breeding for Body Size Traits in Qinchuan Cattle. IJMS. 2018;19(4)1035.
  • Gui L, Hong J, Raza SH, et al. Genetic variants in SIRT3 transcriptional regulatory region affect promoter activity and fat deposition in three cattle breeds. Mol Cell Probes. 2017;32:40–45.
  • Guo H, Raza SHA, Schreurs NM, et al. Genetic variants in the promoter region of the KLF3 gene associated with fat deposition in Qinchuan cattle. Gene. 2018;672:50–55.
  • Wei D, Raza SHA, Zhang J, et al. Polymorphism in promoter of SIX4 gene shows association with its transcription and body measurement traits in Qinchuan cattle. Gene. 2018;656:9–16.
  • Khan R, Raza SHA, Guo H, et al. Genetic variants in the TORC2 gene promoter and their association with body measurement and carcass quality traits in Qinchuan cattle. PLoS One. 2020;15(2):e0227254.
  • Sahoo SS, Mishra C, Kaushik R, et al. Association of a SNP in KISS 1 gene with reproductive traits in goats. Biol Rhythm Res. 2021; 2021/07/0352(6):922–933.
  • Ahlawat S, Sharma R, Maitra A, et al. New genetic polymorphisms in Indian goat BMPR1B gene. Indian J Anim Sci. 2014;84(1):37–42.
  • FAO GpfmodagdMohwfod-i, Food and Agriculture Organization of the United Nations, Rome, Italy. FAO, 2008. Global project for maintenance of domestic animal genetic diversity Food and Agriculture Organization of the United Nations, Rome, Italy. (MoDAD on http://wwwfaoorg/dad-is/). 2008 2008;full.
  • Raza SHA, Khan R, Gui L, et al. Bioinformatics analysis and genetic polymorphisms in genomic region of the bovine SH2B2 gene and their associations with molecular breeding for body size traits in qinchuan beef cattle. Bioscience Reports. 2020;40(3):1–13.
  • Suguna S, Nandal D, Kamble S, et al. Genomic DNA isolation from human whole blood samples by non-enzymatic salting out method. Int J Pharm Pharm Sci. 2014;6(6):198–199.
  • Saitou N, Nei M. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425.
  • Zuckerkandl E, Pauling L. Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ, editors. Evolving Genes and Proteins. Cambridge, MA: Academic Press; 1965:97–166.
  • Kumar S, Stecher G, Tamura K. MEGA7: molecular evolutionary genetics analysis version 7.0 for bigger datasets. Mol Biol Evol. 2016;33(7):1870–1874.
  • Junjvlieke Z, Khan R, Mei C, et al. Effect of ELOVL6 on the lipid metabolism of bovine adipocytes. Genomics. 2020; 2020/05/01/112(3):2282–2290.
  • Bahrami Y, Bahrami S, Mohammadi HR, et al. editors. The Polymorphism of GDF-9 Gene in Hisari Sheep. Biological Forum. 2014. Citeseer.
  • Tang J, Hu W, Di R, et al. Expression analysis of the prolific candidate genes, BMPR1B, BMP15, and GDF9 in Small Tail Han ewes with three fecundity (FecB gene) genotypes. Animals. 2018;8(10):166.
  • Wang X, Khan R, Raza SHA, et al. Molecular characterization of ABHD5 gene promoter in intramuscular preadipocytes of Qinchuan cattle: Roles of Evi1 and C/EBPα. Gene. 2019; 2019/03/30/690:38–47.
  • Khan R, Raza SHA, Schreurs N, et al. Bioinformatics analysis and transcriptional regulation of TORC1 gene through transcription factors NRF1 and Smad3 in bovine preadipocytes. Genomics. 2020; 2020/03/01/112(2):1575–1587.
  • Constantinou AJSRR. Genetic and environmental relationships of body weight, milk yield and litter size in Damascus goats. Small Ruminant Research. 1989;2(2):163–174.
  • Mellado M, Foote R, Borrego E. Lactational performance, prolificacy and relationship to parity and body weight in crossbred native goats in northern Mexico. Small Ruminant Research. 1991;6(1-2):167–174.
  • Perry RC, Corah LR, Cochran RC, et al. Influence of dietary energy on follicular development, serum gonadotropins, and first postpartum ovulation in suckled beef cows. J Anim Sci. 1991;69(9):3762–3773.
  • Kaplan J, Calame K. The ZiN/POZ domain of ZF5 is required for both transcriptional activation and repression. Nucleic Acids Res. 1997;25(6):1108–1116.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.