268
Views
1
CrossRef citations to date
0
Altmetric
Research Articles

Comparative genomic diversity analysis of copy number variations (CNV) in indicine and taurine cattle thriving in Europe and Indian subcontinent

, , , , &

References

  • Rashamol VP, Sejian V. Climate resilient livestock production: way forward. JDVS. 2018;5(5):5556673.
  • Rojas-Downing MM, Nejadhashemi AP, Harrigan T, Woznicki SA. Climate change and livestock: impacts, adaptation, and mitigation. Clim Risk Manag. 2017;16:145–163.
  • Dixit SP, Singh S, Ganguly I, et al. Genome-wide runs of homozygosity revealed selection signatures in Bos indicus. Front Genet. 2020;11:92.
  • Dixit SP, Bhatia AK, Ganguly I, et al. Genome analyses revealed genetic admixture and selection signatures in Bos indicus. Sci Rep. 2021;11(1):21924.
  • Sismani C, Koufaris C, Voskarides K. Copy number variation in human health, disease and evolution. In: Genomic Elements in Health, Disease and Evolution. London: Springer-Verlag; 2015. p. 129–154.
  • Redon R, Ishikawa S, Fitch KR, et al. Global variation in copy number in the human genome. Nature. 2006;444(7118):444–454.
  • Stranger BE, Forrest MS, Dunning M, et al. Relative impact of nucleotide and copy number variation on gene expression phenotypes. Science. 2007;315(5813):848–853.
  • Nguyen DQ, Webber C, Hehir-Kwa J, Pfundt R, Veltman J, Ponting CP. Reduced purifying selection prevails over positive selection in human copy number variant evolution. Genome Res. 2008;18(11):1711–1723.
  • Iskow RC, Gokcumen O, Lee C. Exploring the role of copy number variants in human adaptation. Trends Genet. 2012;28(6):245–257.
  • Zhang F, Gu W, Hurles ME, Lupski JR. Copy number variation in human health, disease, and evolution. Annu Rev Genomics Hum Genet. 2009;10:451–481.
  • Jing Z, Wang X, Cheng Y, et al. Detection of CNV in the SH3RF2 gene and its effects on growth and carcass traits in chickens. BMC Genet. 2020;21(1):22.
  • Li YR, Glessner JT, Coe BP, et al. Rare copy number variants in over 100,000 European ancestry subjects reveal multiple disease associations. Nat Commun. 2020;11(1):255.
  • Wang Z, Guo J, Guo Y, et al. Genome-wide detection of CNVs and association with body weight in sheep based on 600K SNP arrays. Front Genet. 2020;11:558.
  • Liu M, Zhou Y, Rosen BD, et al. Diversity of copy number variation in the worldwide goat population. Heredity. 2019;122(5):636–646.
  • Yang L, Xu L, Zhou Y, et al. Diversity of copy number variation in a worldwide population of sheep. Genomics. 2018;110(3):143–148.
  • Upadhyay MR, Chen W, Lenstra JA, et al. Genetic origin, admixture and population history of aurochs (Bos primigenius) and primitive European cattle. Heredity. 2017;118(2):169–176.
  • Pierce MD, Dzama K, Muchadeyi FC. Genetic diversity of seven cattle breeds inferred using copy number variations. Front Genet. 2018;9:163.
  • Yang L, Xu L, Zhu B, et al. Genome-wide analysis reveals differential selection involved with copy number variation in diverse Chinese cattle. Sci Rep. 2017;7(1):14299.
  • Zhang Y, Hu Y, Wang X, et al. Population structure, and selection signatures underlying high-altitude adaptation inferred from genome-wide copy number variations in Chinese indigenous cattle. Front Genet. 2019;10:1404.
  • Lee YL, Bosse M, Mullaart E, Groenen MAM, Veerkamp RF, Bouwman AC. Functional and population genetic features of copy number variations in two dairy cattle populations. BMC Genomics. 2020;21(1):89.
  • Bhardwaj S, Singh S, Ganguly I, Bhatia AK, Bharti VK, Dixit SP. Genome-wide diversity analysis for signatures of selection of Bos indicus adaptability under extreme agro-climatic conditions of temperate and tropical ecosystems. Animal Gene. 2021;20:200115.
  • Wang K, Li M, Hadley D, et al. PennCNV: an integrated hidden Markov model designed for high-resolution copy number variation detection in whole-genome SNP genotyping data. Genome Res. 2007;17(11):1665–1674.
  • Kim JH, Hu HJ, Yim SH, Bae JS, Kim SY, Chung YJ. CNVRuler: a copy number variation-based case-control association analysis tool. Bioinformatics. 2012;28(13):1790–1792.
  • Salomon-Torres R, González-Vizcarra VM, Medina-Basulto GE, et al. Genome-wide identification of copy number variations in Holstein cattle from Baja California, Mexico, using high-density SNP genotyping arrays. Genet Mol Res. 2015;14(4):11848–11859.
  • Perrier X, Jacquemoud-Collet JP. DARwin software; 2006. https://darwin.cirad.fr/.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959.
  • Falush D, Stephens M, Pritchard JK. Inference of population structure using multilocus genotype data: dominant markers and null alleles. Mol Ecol Notes. 2007;7(4):574–578.
  • Earl D, Vonholdt B, Earl DA, VonHoldt BM. Structure Harvester: a website and program for visualizing STRUCTURE output and implementing the Evanno method. Conserv Genet Resour. 2012;4(2):359–361.
  • Peakall R, Smouse PE. GenAlEx 6.5: genetic analysis in Excel. Population genetic software for teaching and research—an update. Bioinformatics. 2012;28(19):2537–2539.
  • Mi H, Thomas P. PANTHER pathway: an ontology-based pathway database coupled with data analysis tools. Methods Mol Biol. 2009;563:123–140.
  • Helleday T. Pathways for mitotic homologous recombination in mammalian cells. Mutat Res. 2003;532(1–2):103–115.
  • Chen N, Fu W, Zhao J, et al. BGVD: an integrated database for bovine sequencing variations and selective signatures. Genomics Proteomics Bioinformatics. 2020;18(2):186–193.
  • Liu GE, Hou Y, Zhu B, et al. Analysis of copy number variations among diverse cattle breeds. Genome Res. 2010;20(5):693–703.
  • Sebat J, Lakshmi B, Troge J, et al. Large-scale copy number polymorphism in the human genome. Science. 2004;305(5683):525–528.
  • Stankiewicz P, Lupski JR. Genome architecture, rearrangements and genomic disorders. Trends Genet. 2002;18(2):74–82.
  • Fellermann K, Stange DE, Schaeffeler E, et al. A chromosome 8 gene-cluster polymorphism with low human beta-defensin 2 gene copy number predisposes to Crohn disease of the colon. Am J Hum Genet. 2006;79(3):439–448.
  • Feuk L, Carson AR, Scherer SW. Structural variation in the human genome. Nat Rev Genet. 2006;7(2):85–97.
  • Itsara A, Wu H, Smith JD, et al. De novo rates and selection of large copy number variation. Genome Res. 2010;20(11):1469–1481.
  • Choi JW, Lee KT, Liao X, et al. Genome-wide copy number variation in Hanwoo, Black Angus, and Holstein cattle. Mamm Genome. 2013;24(3–4):151–163.
  • Liu GE, Brown T, Hebert DA, et al. Initial analysis of copy number variations in cattle selected for resistance or susceptibility to intestinal nematodes. Mamm Genome. 2011;22(1–2):111–121.
  • Upadhyay M, da Silva VH, Megens HJ, et al. Distribution and functionality of copy number variation across European cattle populations. Front Genet. 2017;8:108.
  • Liu GE, Bickhart DM. Copy number variation in the cattle genome. Funct Integr Genomics. 2012;12(4):609–624.
  • Sasaki S, Watanabe T, Nishimura S, Sugimoto Y. Genome-wide identification of copy number variation using high-density single-nucleotide polymorphism array in Japanese Black cattle. BMC Genet. 2016;17:26.
  • Gao Y, Jiang J, Yang S, et al. CNV discovery for milk composition traits in dairy cattle using whole genome resequencing. BMC Genomics. 2017;18(1):265.
  • Hu Y, Xia H, Li M, et al. Comparative analyses of copy number variations between Bos taurus and Bos indicus. BMC Genomics. 2020;21(1):682.
  • Kumar H, Panigrahi M, Saravanan KA, et al. Genome-wide detection of copy number variations in Tharparkar cattle. Anim Biotechnol. 2021:1–8.
  • Liu M, Fang L, Liu S, et al. Array CGH-based detection of CNV regions and their potential association with reproduction and other economic traits in Holsteins. BMC Genomics. 2019;20(1):181.
  • Barshis DJ, Ladner JT, Oliver TA, Seneca FO, Traylor-Knowles N, Palumbi SR. Genomic basis for coral resilience to climate change. Proc Natl Acad Sci USA. 2013;110(4):1387–1392.
  • Willot Q, Mardulyn P, Defrance M, Gueydan C, Aron S. Molecular chaperoning helps safeguarding mitochondrial integrity and motor functions in the Sahara silver ant Cataglyphis bombycina. Sci Rep. 2018;8(1):9220.
  • Truebano M, Fenner P, Tills O, Rundle S, Rezende E. Thermal strategies vary with life history stage. J Exp Biol. 2018;221(8):1–5.
  • Sun Z, Wu T, Zhao F, Lau A, Birch CM, Zhang DD. KPNA6 (Importin α7)-mediated nuclear import of Keap1 represses the Nrf2-dependent antioxidant response. Mol Cell Biol. 2011;31(9):1800–1811.
  • Paudel Y, Madsen O, Megens HJ, et al. Evolutionary dynamics of copy number variation in pig genomes in the context of adaptation and domestication. BMC Genomics. 2013;14(1):449.
  • Caroppo E. Endocrine genetic defects. In: Skinner MK, ed. Encyclopedia of Reproduction. 2nd ed. Oxford: Academic Press; 2018:252–257.
  • Dupont N, Chauhan S, Arko-Mensah J, et al. Neutral lipid stores and lipase PNPLA5 contribute to autophagosome biogenesis. Curr Biol. 2014;24(6):609–620.
  • Zhang Z, Boelen A, Kalsbeek A, Fliers E. TRH neurons and thyroid hormone coordinate the hypothalamic response to cold. Eur Thyroid J. 2018;7(6):279–288.
  • Chaudhari A, Håversen L, Mobini R, et al. ARAP2 promotes GLUT1-mediated basal glucose uptake through regulation of sphingolipid metabolism. Biochim Biophys Acta. 2016;1861(11):1643–1651.
  • Yang CH, Mangiafico S, Waibel M, et al. E2f8 and Dlg2 genes have independent effects on impaired insulin secretion associated with hyperglycaemia. Diabetologia. 2020;63(7):1333–1348.
  • Luo W, Fang M, Xu H, Xing H, Nie Q. Transcriptome comparison in the pituitary–adrenal axis between Beagle and Chinese Field dogs after chronic stress exposure. Anim Genet. 2015;46(5):522–534.
  • Senczuk G, Mastrangelo S, Ajmone-Marsan P, et al. On the origin and diversification of Podolian cattle breeds: testing scenarios of European colonization using genome-wide SNP data. Genet Sel Evol. 2021;53(1):48.
  • Barbato M, Hailer F, Upadhyay M, et al. Adaptive introgression from indicine cattle into white cattle breeds from central Italy. Sci Rep. 2020;10(1):1279.
  • Decker JE, McKay SD, Rolf MM, et al. Worldwide patterns of ancestry, divergence, and admixture in domesticated cattle. PLOS Genet. 2014;10(3):e1004254.
  • Mastrangelo S, Tolone M, Ben Jemaa S, et al. Refining the genetic structure and relationships of European cattle breeds through meta-analysis of worldwide genomic SNP data, focusing on Italian cattle. Sci Rep. 2020;10(1):14522.
  • Pitt D, Sevane N, Nicolazzi EL, et al. Domestication of cattle: two or three events? Evol Appl. 2019;12(1):123–136.
  • Bahbahani H, Clifford H, Wragg D, et al. Signatures of positive selection in East African Shorthorn Zebu: a genome-wide single nucleotide polymorphism analysis. Sci Rep. 2015;5(1):11729.
  • Lorenzo PD, Lancioni H, Ceccobelli S, et al. Mitochondrial DNA variants of Podolian cattle breeds testify for a dual maternal origin. PLOS One. 2018;13(2):e0192567.
  • Pellecchia M, Negrini R, Colli L, et al. The mystery of Etruscan origins: novel clues from Bos taurus mitochondrial DNA. Proc R Soc B. 2007;274(1614):1175–1179.
  • Verdugo MP, Mullin VE, Scheu A, et al. Ancient cattle genomics, origins, and rapid turnover in the fertile crescent. Science. 2019;365(6449):173–176.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.