190
Views
2
CrossRef citations to date
0
Altmetric
Research Articles

Determination of declined genetic diversity of Holstein stud bulls based on microsatellite markers

ORCID Icon

References

  • Ellegren H, Galtier N. Determinants of genetic diversity. Nat Rev Genet. 2016;17(7):422–433.
  • Groeneveld LF, Lenstra JA, Eding H, et al. Genetic diversity in farm animals - A Review. Anim Genet. 2010;41:6–31.
  • Notter DR. The importance of genetic diversity in livestock populations of the future. J Anim Sci. 1999;77(1):61–69.
  • Goddard ME. Optimal effective population size for the global population of black and White Dairy Cattle. J Dairy Sci. 1992;75(10):2902–2911.
  • Foote RH. The history of artificial insemination, Selected Notes and Notables. J Anim Sci. 2002;80(2):1–10.
  • Philipsson J. Standards and procedures for international genetic evaluations of dairy cattle. J Dairy Sci. 1987;70(2):418–424.
  • Freebern E, Santos DJA, Fang L, et al. GWAS and fine-mapping of livability and six disease traits in Holstein cattle. BMC Genomics. 2020;21(1)
  • Kizilaslan M, Arzik Y, White SN, Piel LMW, Cinar MU. Genetic parameters and genomic regions underlying growth and linear type traits in Akkaraman sheep. Genes. 2022;13(8):1414. 2022.
  • Mucha S, Mrode R, Coffey M, Kizilaslan M, Desire S, Conington J. Genome-wide association study of conformation and milk yield in mixed-breed dairy goats. J Dairy Sci. 2018;101(3):2213–2225.
  • Benjemaa S, Rahal O, Gaouar SBS, Mastrangelo S, Boussaha M, Ciani E. Genomic characterization of Algerian Guelmoise cattle and their genetic relationship with other North African populations inferred from SNP genotyping arrays. Livestock Science. 2018;217:19–25.
  • Yilmaz O, Kizilaslan M, Arzik Y, et al. Genome-wide association studies of preweaning growth and in vivo carcass composition traits in Esme sheep. J Anim Breed Genet. 2022;139(1):26–39.
  • Zepeda-Batista JL, Núñez-Domínguez R, Ramírez-Valverde R, Jahuey-Martínez FJ, Herrera-Ojeda JB. Parra-Bracamonte GM. Discovering of genomic variations associated to growth traits by GWAS in Braunvieh cattle. Genes. 2021;12(11):1666.
  • Agung PP, Saputra F, Zein MSA, et al. Genetic diversity of Indonesian cattle breeds based on microsatellite markers. Asian-Australas J Anim Sci. 2019;32(4):467–476.
  • Garkovenko AV, Radchenko VV, Ilnitskaya EV, et al. Polymorphism of cattle microsatellite complexes. Journal of Pharmaceutical Sciences and Research. 2018;10(6):1545–1551.
  • Rahal O, Aissaoui C, Ata N, et al. Genetic characterization of four Algerian cattle breeds using microsatellite markers. Anim Biotechnol. 2021;32(6):699–707.
  • Avolio ML, Beaulieu JM, Lo EY, Smith MD. Measuring genetic diversity in ecological studies. Plant Ecol. 2012;213(7):1105–1115.
  • Schoen DJ, Brown AH. Conservation of allelic richness in wild crop relatives is aided by assessment of genetic markers. Proc Natl Acad Sci U S A. 1993;90(22):10623–10627.
  • Nei M, Maruyama T, Chakraborty R. The bottleneck effect and genetic variability in populations. Evolution. 1975;29(1):1–10.
  • Brenig B, Schütz E. Recent development of allele frequencies and exclusion probabilities of microsatellites used for parentage control in the German Holstein Friesian cattle population. BMC Genet. 2016;17:18.
  • Vanessa R, Prastowo S, Nugroho T, Widyas N, Susilowati, A, Sutarno. Microsatellite selection candidate associated with reproduction trait in Indonesian Friesian Holstein using published studies. AIP Conf Proc 2008. 2018;2014(1):id.020055
  • Kim JJ, Farnir F, Savell J, Taylor JF. Detection of quantitative trait loci for growth and beef carcass fatness traits in a cross between Bos Taurus (Angus) and Bos indicus (brahman) cattle. J Anim Sci. 2003;81(8):1933–1942.
  • FAO 2004. Secondary Guidelines: Measurement of Domestic Animal Diversity (MoDAD): Recommended Microsatellite Markers. (http://dad.fao.org/.)
  • ISAG Conference. Porto Seguro, Brazil Cattle Molecular Markers and Parentage Testing Workshop. 2006. http://www.isag.org.uk/ISAG/all/ISAG2006_CMMPT.pdf
  • ISAG Conference. Amsterdam, the Netherlands. Cattle Molecular Markers and Parentage Testing Workshop. 2008. http://www.isag.org.uk/ISAG/all/ISAG2008_CattleParentage.pdf
  • Rousset F. genepop’007: A complete re‐implementation of the genepop software for windows and linux. Mol Ecol Resour. 2008;8(1):103–106.
  • Goudet J. FSTAT (version 1.2), A computer program to calculate F-statistics. J Hered. 1995;86(6):485–486.
  • Excoffier L, Laval G, Schneider S. Arlequin (version 3.0), An integrated software package for population genetics data analysis. Evol Bioinform Online. 2007;1:47–50.
  • Kalinowski ST, Taper ML, Marshall TC. Revising how the computer program Cervus accommodates genotyping error increases success in paternity assignment. Mol Ecol. 2007;16(5):1099–1106.
  • Saitou N, Nei M. The neighbor-joining method, a new method for reconstructing phylogenetic trees. Mol Biol Evol. 1987;4(4):406–425.
  • Perrier X, Flori A, Bonnot F. Data analysis methods. In: Hamon P, Seguin M, Perrier X, Glaszmann JC, eds. Genetic diversity of cultivated tropical plants. Enfield, Montpellier: Science Publishers; 2003. p. 43–76.
  • Pritchard JK, Stephens M, Donnelly P. Inference of population structure using multilocus genotype data. Genetics. 2000;155(2):945–959.
  • Evanno G, Regnaut S, Goudet J. Detecting the number of clusters of individuals using the software Structure: A simulation study. Mol Ecol. 2005;14(8):2611–2620.
  • Earl DA, vonHoldt BM. Structure Harvester: A website and program for visualizing Structure output and implementing the Evanno method. Conservation Genetics Resources. 2012;4(2):359–361.
  • Ozkan E, Soysal MI, Ozder M, Koban E, Sahin O, Togan I. Evaluation of parentage testing in the Turkish Holstein population based on 12 microsatellite loci. Livest Sci. 2009;124(1-3):101–106.
  • Zhang Y, Wang Y, Sun D, Yu Y, Zhang Y. Validation of 17 microsatellite markers for parentage verification and identity test in Chinese Holstein cattle. Asian-Australas. J Anim Sci. 2010;23(4):425.
  • Chaudhari MV, Parmar SNS, Joshi CG, Bhong CD, Fatima S, Thakur MS and Thakur SS. Molecular characterization of Kenkatha and Gaolao (Bos indicus) cattle breeds using microsatellite markers. Anim Biodivers Conserv. 2009; 32(2):71–76.
  • Montoya AE, Cerón-Muñoz MF, Moreno MA, et al. Genetic characterization of the Hartón del Valle, Angus, Brangus, Holstein, and Senepol cattle breeds in Colombia, using ten microsatellite markers. Rev Colomb Cienc Pecu. 2010;23:283–291.
  • Sawicka-Zugaj W, Chabuz W, Litwińczuk Z, Kasprzak-Filipek K. Evaluation of reproductive performance and genetic variation in bulls of the Polish White-Backed breed. Reprod Domest Anim. 2018;53(1):157–162.
  • Sheveleva O, Bakharev A, Chasovshchikova M, et al. Characterization of the genetic structure of a Hereford breed herd based on STR loci. Amazonia Investiga. 2019;8(23):278–285.
  • Teneva А, Todorovska E, Tyufekchiev N, Stella A, Boettcher P, Dimitrova I. Molecular characterization of Bulgarian livestock genetic resources. II. Microsatelite variation within and among Bulgarian cattle breeds. Biotech. Anim. Husbandry. 2007;3(5-6):227–242.
  • Tian F, Sun D, Zhang Y. Establishment of paternity testing system using microsatellite markers in Chinese Holstein. J Genet Genomics. 2008;35(5):279–284.
  • Dakin EE, Avise JC. Microsatellite null alleles in parentage analysis. Heredity (Edinb). 2004;93(5):504–509.

Reprints and Corporate Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

To request a reprint or corporate permissions for this article, please click on the relevant link below:

Academic Permissions

Please note: Selecting permissions does not provide access to the full text of the article, please see our help page How do I view content?

Obtain permissions instantly via Rightslink by clicking on the button below:

If you are unable to obtain permissions via Rightslink, please complete and submit this Permissions form. For more information, please visit our Permissions help page.